Safranal Attenuates Excitotoxin-Induced Oxidative OLN-93 Cells Injury

Author:

Alavi Mohaddeseh Sadat12,Fanoudi Sahar32,Fard Ameneh Veisi2,Soukhtanloo Mohammad4,Hosseini Mahmoud3,Barzegar Hanif2,Sadeghnia Hamid R.132

Affiliation:

1. Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran

2. Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

3. Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

4. Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

Abstract Objectives Researches have been shown that glutamic acid (GA) or quinolinic acid (QA) can play role in neuroinflammatory and demyelinating diseases including multiple sclerosis (MS), mainly via oligodendrocytes activation and extreme free radicals generation. Recent studies have demonstrated that safranal, an active constituent of Crocus sativus, has several pharmacological effects such as antioxidant, anti-inflammatory and neuroprotective properties. Since there is no data about the impact of safranal on MS, this study was designed to investigate the protective effect of safranal on OLN-93 oligodendrocytes injury induced by GA or QA. Materials and Methods At first, the potential toxic effect of safranal on OLN-93 viability was evaluated. Also, the cells were pretreated with safranal (0.1, 1, 10, 50, 100 and 200 μM) for 2 h and then subjected to GA (16 mM) or QA (8 mM) toxicity for 24 h, in which the same treatments were applied. The cell viability and parameters of redox status such as the levels of intracellular reactive oxygen species (ROS) and lipid peroxidation were measured. Results Safranal at concentration ranges of 1–800 μM had no toxic effect on cell viability (p>0.05). Treatment with safranal significantly increased cell viability following GA or QA insults at concentrations higher than 1 μM (p<0.01). The cytoprotective potential of safranal was also accompanied by decreased ROS accumulation (p<0.001) and malondialdehyde level (p<0.001) following GA or QA insults. Conclusion The data suggests that safranal exhibits oligoprotection potential by means of inhibiting oxidative stress parameters.

Publisher

Georg Thieme Verlag KG

Subject

Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3