Herbacetin Broadly Blocks the Activities of CYP450s by Different Inhibitory Mechanisms

Author:

Qian Jianchang1,Li Yinghui2,Zhang Xiaodan3,Chen Daoxing1,Han Mingming1,Xu Tao4,Chen Bingbing1,Hu Guoxin1,Li Junwei1ORCID

Affiliation:

1. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China

2. Ruian Peopleʼs Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China

3. The Seventh Peopleʼs Hospital of Wenzhou, Wenzhou, Zhejiang, China

4. Ningbo City First Hospital, Ningbo, Zhejiang, China

Abstract

AbstractHerbacetin is a bioactive flavanol compound that has various pharmacological effects. However, the pharmacokinetic characteristics have not been thoroughly investigated. Previously, we screened a natural compound library and identified herbacetin as a potent CYP blocker. Herein, we aimed to mechanistically determine the inhibitory effects of herbacetin on CYP450 and its potential application. A human liver microsome incubation system was developed based on a UPLC-MS/MS method. Moreover, an in silico docking assay and a human CYP recombinase reaction system were developed and used to investigate binding affinity and inhibitory efficacy. Subsequently, the effects of the combination of herbacetin and sorafenib on HepG2 cells were assessed by MTT and immunoblotting assays. The concentration of sorafenib and its main metabolite were measured by UPLC-MS/MS after incubation with or without herbacetin. As a result, we found herbacetin almost completely inhibited the functions of major CYPs at 100 µM. Moreover, through analysis of the structure-activity relationship, we found 4-, 6-, and 8-hydroxyl were essential groups for the inhibitory effects. Herbacetin inhibited CYP3A4, CYP2B6, CYP2C9, and CYP2E1 in a mixed manner, but non-competitively blocked CYP2D6. These results are in good agreement with the recombinase reaction in vitro results, with an IC50 < 10 µM for each tested isoenzyme. Interestingly, the stimulatory effects of sorafenib on HepG2 cell apoptosis were significantly enhanced by combining with herbacetin, which was associated with increased sorafenib exposure. In summary, herbacetin is a potent inhibitor of a wide spectrum of CYP450s, which may enhance the exposure of drugs in vivo.

Funder

National Natural Science Foundation of China

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry,Complementary and alternative medicine,Drug Discovery,Pharmaceutical Science,Pharmacology,Molecular Medicine,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3