Affiliation:
1. Department of Chemistry, Rutgers University
Abstract
In the past several years, tremendous advances have been made in non-classical routes for amide bond formation that involve transamidation and amidation reactions of activated amides and esters. These new methods enable the formation of extremely valuable amide bonds via transition-metal-catalyzed, transition-metal-free, or metal-free pathways by exploiting chemoselective acyl C–X (X = N, O) cleavage under mild conditions. In a broadest sense, these reactions overcome the formidable challenge of activating C–N/C–O bonds of amides or esters by rationally tackling nN → π*C=O delocalization in amides and nO → π*C=O donation in esters. In this account, we summarize the recent remarkable advances in the development of new methods for the synthesis of amides with a focus on (1) transition-metal/NHC-catalyzed C–N/C–O bond activation, (2) transition-metal-free highly selective cleavage of C–N/C–O bonds, (3) the development of new acyl-transfer reagents, and (4) other emerging methods.1 Introduction2 Transamidation of Amides2.1 Transamidation by Metal–NHC Catalysis (Pd–NHC, Ni–NHC)2.2 Transition-Metal-Free Transamidation via Tetrahedral Intermediates2.3 Reductive Transamidation2.4 New Acyl-Transfer Reagents2.5 Tandem Transamidations3 Amidation of Esters3.1 Amidation of Esters by Metal–NHC Catalysis (Pd–NHC, Ni–NHC)3.2 Transition-Metal-Free Amidation of Esters via Tetrahedral Intermediates3.3 Reductive Amidation of Esters4 Transamidations of Amides by Other Mechanisms5 Conclusions and Outlook
Funder
National Science Foundation
Subject
Organic Chemistry,Catalysis
Cited by
77 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献