Tracheal Replacement Using an In-Body Tissue-Engineered Collagenous Tube “BIOTUBE” with a Biodegradable Stent in a Beagle Model: A Preliminary Report on a New Technique

Author:

Nakayama Yasuhide1,Umeda Satoshi2,Takama Yuichi2,Terazawa Takeshi1,Okuyama Hiroomi2,Hiwatashi Shohei2

Affiliation:

1. Department of Biomedical Engineering, NCVC Research Institute, Suita, Osaka, Japan

2. Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan

Abstract

Introduction Tracheal reconstruction for long-segment stenosis remains challenging. We investigate the usefulness of BIOTUBE, an in-body tissue-engineered collagenous tube with a biodegradable stent, as a novel tracheal scaffold in a beagle model. Materials and Methods We prepared BIOTUBEs by embedding specially designed molds, including biodegradable stents, into subcutaneous pouches in beagles. After 2 months, the molds were filled with ingrown connective tissues and were harvested to obtain the BIOTUBEs. The BIOTUBEs, cut to 10- or 20-mm lengths, were implanted to replace the same-length defects in the cervical trachea of five beagles. Endoscopic and fluoroscopic evaluations were performed every week until the lumen became stable. The trachea, including the BIOTUBE, was harvested and subjected to histological evaluation between 3 and 7 months after implantation. Results One beagle died 28 days after 20-mm BIOTUBE implantation because of insufficient expansion and retention force of the stent. The remaining four beagles were implanted with a BIOTUBE reinforced by a strong stent, and all survived the observation period. Endoscopy revealed narrowing of the BIOTUBEs in all four beagles, due to an inflammatory reaction, but patency was maintained by steroid application at the implantation site and balloon dilatation against the stenosis. After 2 months, the lumen gradually became wider. Histological analyses showed that the internal surface of the BIOTUBEs was completely covered with tracheal epithelial cells. Conclusion This study demonstrated the usefulness of the BIOTUBE with a biodegradable stent as a novel scaffold for tracheal regeneration.

Publisher

Georg Thieme Verlag KG

Subject

Surgery,Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3