Tanshinol Alleviates Osteoporosis and Myopathy in Glucocorticoid-Treated Rats

Author:

Chen Guanghua1,Zhang Xinle2,Lin Han3,Huang Guizhi1,Chen Yahui2,Cui Liao24

Affiliation:

1. Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China

2. Department of Pharmacology, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong, China

3. Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guian, Guizhou, China

4. Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, China

Abstract

AbstractTanshinol is a major water-soluble active component of Salvia miltiorrhiza. In this study, we aimed to investigate whether tanshinol has potential therapeutic effects against glucocorticoid-induced osteoporosis and glucocorticoid-induced myopathy. Ninety-six female Sprague-Dawley rats were randomly assigned to five groups: a control group, a model group, and three model groups treated with 25 or 50 mg/kg of tanshinol, or calcitriol. All model groups received prednisone acetate for 90 days to induce glucocorticoid-induced osteoporosis. Afterwards, all animals underwent a surgical procedure to induce bone defects at the right proximal tibia. Prednisone treatment was stopped after surgery, but tanshinol or calcitriol treatment was continued to the endpoint. At the experimental endpoint, compared to the model group, 25 mg/kg tanshinol could significantly reverse glucocorticoid-induced loss of bone mineral density by 12.5 %, while enhancing mechanical bone strength, causing a significant 11 % increase in trabecular number, and reducing trabecular separation by 28 %. In addition, tanshinol improved the bone microarchitecture and prevented glucocorticoid-induced bone loss by promoting bone formation and inhibiting bone resorption. Moreover, results of bone defect repair and muscle weight measurements revealed that tanshinol accelerated the bone fracture healing process and attenuated muscle atrophy caused by glucocorticoid. Furthermore, qRT-PCR analysis showed a 1-fold upregulation in mRNA levels of transforming growth factor beta and roughly 6-fold increases in vascular endothelial growth factor mRNA expression in calluses from the tanshinol groups. Tanshinol also preserved muscular ubiquitin mRNA levels from glucocorticoid-induced elevation. These findings demonstrate the potential benefits of tanshinol against glucocorticoid-induced osteoporosis and glucocorticoid-induced myopathy, which warrants further investigation in future studies.

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry,Complementary and alternative medicine,Drug Discovery,Pharmaceutical Science,Pharmacology,Molecular Medicine,Analytical Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3