Strain Elastography: A Valuable Additional Method to BI-RADS?

Author:

Zhao Xin-Bao1,Yao Ji-Yi1,Zhou Xin1,Hao Shao-Yun1,Mu Wen2,Li Lu-Jing1,Zhong Wen-Jing1,Hui Zhi1

Affiliation:

1. Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China

2. Department of Ultrasound, Second Affiliated Hospital of Guangzhou Medical College, Guang Zhou, China

Abstract

Abstract Background Breast lesions classified as BI-RADS-US 3 are probably benign and observation was recommended, while a considerable number of BI-RADS-US 4 lesions were benign, resulting in excessive biopsies. We focus exclusively on BI-RADS-US 3 and 4 lesions and hypothesize that improved diagnostic performance can be achieved by integrating real-time elastography (strain ratio) into the BI-RADS-US classification system. Method From April 2010 to September 2015, 1071 lesions were included in the final analysis. After the conventional ultrasound examination, the BI-RADS-US (2013) classification was used to evaluate the lesions. Then the strain ratios were calculated, and the final diagnosis was made on the basis of histological results. The sensitivity, specificity, accuracy, PPV and NPV were calculated and the AUCs were compared. Additionally, an analysis of the diagnostic performance expressed by the pretest and posttest probability of disease (POD) was performed in BI-RADS-US 3 and 4A lesions. Results With the cutoff point of 2.98, the sensitivity, specificity and accuracy of the strain ratio method were 86.9 %, 86.6 % and 82.6 %, respectively. In BI-RADS-US 3 lesions, a suspicious strain ratio significantly modified the POD from 1.3 % to a posttest POD of 29.8 %. In BI-RADS-US 4A lesions, a suspicious strain ratio significantly modified the POD from 8.5 % to a posttest POD of 48.7 %. Conclusion Ultrasonographic elastography (strain ratio) yields additional diagnostic information in the evaluation of BI-RADS-US 3 and 4 breast lesions. The strain ratios should be integrated into the BI-RADS-US classification system and into daily practice.

Publisher

Georg Thieme Verlag KG

Subject

Radiology Nuclear Medicine and imaging

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3