POINT: Pipeline for Offline Conversion and Integration of Geocodes and Neighborhood Data

Author:

Guo Kevin1,McCoy Allison B.2,Reese Thomas J.2,Wright Adam2,Rosenbloom Samuel Trent2,Liu Siru2,Russo Elise M.2,Steitz Bryan D.2

Affiliation:

1. School of Medicine, Vanderbilt University, Nashville, Tennessee, United States

2. Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, United States

Abstract

Abstract Objectives Geocoding, the process of converting addresses into precise geographic coordinates, allows researchers and health systems to obtain neighborhood-level estimates of social determinants of health. This information supports opportunities to personalize care and interventions for individual patients based on the environments where they live. We developed an integrated offline geocoding pipeline to streamline the process of obtaining address-based variables, which can be integrated into existing data processing pipelines. Methods POINT is a web-based, containerized, application for geocoding addresses that can be deployed offline and made available to multiple users across an organization. Our application supports use through both a graphical user interface and application programming interface to query geographic variables, by census tract, without exposing sensitive patient data. We evaluated our application's performance using two datasets: one consisting of 1 million nationally representative addresses sampled from Open Addresses, and the other consisting of 3,096 previously geocoded patient addresses. Results A total of 99.4 and 99.8% of addresses in the Open Addresses and patient addresses datasets, respectively, were geocoded successfully. Census tract assignment was concordant with reference in greater than 90% of addresses for both datasets. Among successful geocodes, median (interquartile range) distances from reference coordinates were 52.5 (26.5–119.4) and 14.5 (10.9–24.6) m for the two datasets. Conclusion POINT successfully geocodes more addresses and yields similar accuracy to existing solutions, including the U.S. Census Bureau's official geocoder. Addresses are considered protected health information and cannot be shared with common online geocoding services. POINT is an offline solution that enables scalability to multiple users and integrates downstream mapping to neighborhood-level variables with a pipeline that allows users to incorporate additional datasets as they become available. As health systems and researchers continue to explore and improve health equity, it is essential to quickly and accurately obtain neighborhood variables in a Health Insurance Portability and Accountability Act (HIPAA)-compliant way.

Funder

National Institute on Aging

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Computer Science Applications,Health Informatics

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3