Color Characteristics of High Yttrium Oxide–Doped Monochrome and Multilayer Partially Stabilized Zirconia upon Different Sintering Parameters

Author:

Juntavee Niwut1ORCID,Juntavee Apa2ORCID,Jaralpong Chutikarn3

Affiliation:

1. Department of Prosthodontics, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand

2. Department of Preventive Dentistry, Division of Pediatric Dentistry, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand

3. Division of Biomaterials and Prosthodontics Research, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand

Abstract

Abstract Objectives Sintering influences the optical properties of zirconia. This study examined the effect of altering sintering temperature and time of monochrome (Mo) and multilayer (Mu) 5 mol% yttria-partially stabilized zirconia (5Y-PSZ) on color characteristics. Materials and Methods Three hundred specimens (width × length × thickness = 10 × 20 × 2 mm) were prepared from Mo and Mu (with cervical [C], middle [M], and incisal [I] region) 5Y-PSZ and randomly sintered at decreasing (Td: 1,450°C), regular (Tr: 1,500°C), and increasing (TI: 1,550°C) sintering temperature, with extremely short (He: 10 minutes), ultrashort (Hu: 15 minutes), short (Hs: 30 minutes), and regular (Hr: 135 minutes) sintering time (n = 15/group). Color appearance (EW ), translucency parameter (TP), contrast ratio (CR), opalescence parameter (OP), and color appearance difference (∆E diff) were evaluated in the CIE L*a*b* system. Microstructures were evaluated by scanning electron microscope (SEM) and X-ray diffractometer (XRD). Statistical Analysis Analysis of variance (ANOVA) and Bonferroni comparisons were determined for significant differences (p < 0.05). Results Significant differences in color parameters upon zirconia type, sintering temperature, and sintering time, and their interactions were indicated (p < 0.05). Increasing sintering temperature and extended sintered time resulted in larger grain, reduced tetragonal-to-monoclinic phase transformation, and significantly increased the TP and OP, but decreased the CR and ∆E diff (p < 0.05). Decreasing sintering temperature and time led to clinically unacceptable color appearance. Conclusion Mo was found to be more translucent than Mu. To achieve the most favorable optical properties, increasing sintering temperature and extending sintering time are recommended. Decreasing sintering temperature is not suggested. However, shortened sintering time is feasible, but it needs sintering with increasing sintering temperature to achieve a promising color appearance.

Funder

Royal Thai Government

Publisher

Georg Thieme Verlag KG

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3