A Neurosurgical Readmissions Reduction Program in an Academic Hospital Leveraging Machine Learning, Workflow Analysis, and Simulation

Author:

Wu Tzu-Chun,Kim Abraham,Tsai Ching-Tzu,Gao Andy,Ghuman Taran,Paul Anne1,Castillo Alexandra1,Cheng Joseph,Adogwa Owoicho,Ngwenya Laura B.,Foreman Brandon,Wu Danny T.Y.

Affiliation:

1. UCHealth, Cincinnati, Ohio, United States

Abstract

Abstract Background Predicting 30-day hospital readmissions is crucial for improving patient outcomes, optimizing resource allocation, and achieving financial savings. Existing studies reporting the development of machine learning (ML) models predictive of neurosurgical readmissions do not report factors related to clinical implementation. Objectives Train individual predictive models with good performance (area under the receiver operating characteristic curve or AUROC > 0.8), identify potential interventions through semi-structured interviews, and demonstrate estimated clinical and financial impact of these models. Methods Electronic health records were utilized with five ML methodologies: gradient boosting, decision tree, random forest, ridge logistic regression, and linear support vector machine. Variables of interest were determined by domain experts and literature. The dataset was split divided 80% for training and validation and 20% for testing randomly. Clinical workflow analysis was conducted using semi-structured interviews to identify possible intervention points. Calibrated agent-based models (ABMs), based on a previous study with interventions, were applied to simulate reductions of the 30-day readmission rate and financial costs. Results The dataset covered 12,334 neurosurgical intensive care unit (NSICU) admissions (11,029 patients); 1,903 spine surgery admissions (1,641 patients), and 2,208 traumatic brain injury (TBI) admissions (2,185 patients), with readmission rate of 13.13, 13.93, and 23.73%, respectively. The random forest model for NSICU achieved best performance with an AUROC score of 0.89, capturing potential patients effectively. Six interventions were identified through 12 semi-structured interviews targeting preoperative, inpatient stay, discharge phases, and follow-up phases. Calibrated ABMs simulated median readmission reduction rates and resulted in 13.13 to 10.12% (NSICU), 13.90 to 10.98% (spine surgery), and 23.64 to 21.20% (TBI). Approximately $1,300,614.28 in saving resulted from potential interventions. Conclusion This study reports the successful development and simulation of an ML-based approach for predicting and reducing 30-day hospital readmissions in neurosurgery. The intervention shows feasibility in improving patient outcomes and reducing financial losses.

Publisher

Georg Thieme Verlag KG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3