Restriction of Postoperative Joint Loading in a Murine Model of Anterior Cruciate Ligament Reconstruction: Botulinum Toxin Paralysis and External Fixation

Author:

Lebaschi Amir1,Deng Xiang-Hua2,Coleman Nathan3,Camp Christopher34,Zong Jianchun1,Carbone Andrew1,Carballo Camila1,Cong Guang-Ting1,Album Zoe1,Rodeo Scott5

Affiliation:

1. Department of Tissue Engineering, Repair, and Regeneration, Hospital for Special Surgery, New York, New York

2. Department of Sports Medicine and Shoulder Surgery, Hospital for Special Surgery, New York, New York

3. Department of Sports Medicine, Hospital for Special Surgery, New York, New York

4. Department of Orthopedic Sports Medicine, Mayo Clinic, Rochester, Minnesota, United States

5. Department of Orthopaedics, Hospital for Special Surgery, New York, New York

Abstract

AbstractControl of knee motion in small animal models is necessary to study the effect of mechanical load on the healing process. This can be especially challenging in mice, which are being increasingly used for various orthopedic reconstruction models. We explored the feasibility of botulinum toxin (Botox; Allergan, Dublin, Ireland) paralysis and a newly designed external fixator to restrict motion of the knee in mice undergoing anterior cruciate ligament (ACL) reconstruction. Nineteen C57BL/6 mice were allocated to two groups: (1) Botox group (n = 9) and (2) external fixator group (n = 10). Mice in Botox group received two different doses of Botox: 0.25 unit (n = 3) and 0.5 unit (n = 6). Injection was performed 72 hours prior to ACL reconstruction into the quadriceps, hamstring, and calf muscles of the right hind leg. Mice in external fixator group received an external fixator following ACL reconstruction. Mice were monitored for survival, tolerance, and achievement of complete knee immobilization. All mice were meant for sacrifice on day 14 postoperatively. No perceptible change in gait was observed with 0.25 unit of Botox. All mice that received 0.5 unit of Botox had complete hind limb paralysis documented by footprint analysis 2 days after injection but failed to tolerate anesthesia and were euthanized 24 hours after operation due to their critical condition. In contrast, the external fixator was well tolerated and effectively immobilized the limb. There was a single occurrence of intraoperative technical error in the external fixator group that led to euthanasia. No mechanical failure or complication was observed. Botox paralysis was not a viable option for postoperative restriction of motion and joint loading in mice. However, external fixation was an effective method for complete knee immobilization and can be used in murine models requiring postoperative control of knee loading. This study introduces a robust research tool to allow control of postoperative joint loading in animal models such as ACL reconstruction, permitting study of the effects of mechanical load on the biologic aspects of tendon-to-bone healing.

Publisher

Georg Thieme Verlag KG

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3