Accuracy of the Surface Contour of Three-Dimensional-Printed Canine Pelvic Replicas

Author:

Ming Lu1ORCID,Lam Griselda2,Jeong Junemoe3,Sun Young Kim4ORCID

Affiliation:

1. Oregon State University, Magruder Hall, Corvallis, Oregon, United States

2. VCA London Regional Veterinary Emergency and Referral Hospital, London, Ontario, Canada

3. Gwangju Animal Medical Center, Gwangju, Korea (the Republic of)

4. College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States

Abstract

Abstract Objective The aim of this study was to determine the differences in surface contour between models of native pelvic bones and their corresponding three-dimensional (3D)-printed replicas. Study Design Digital 3D models of five cadaveric hemipelves and five live dogs with contralateral pelvic fractures were generated based on computed tomographic images and 3D printed. The 3D-printed replicas underwent 3D scanning and digital 3D models of the replicas were created. The digital 3D model of each replica was superimposed onto the model of the native hemipelvis. Errors in the replicas were determined by comparing the distances of 120,000 corresponding surface points between models. The medial surface, lateral surface and dorsal surface of the acetabulum (DSA) of each hemipelvis were selected for further analysis. The root mean square error (RMSE) was compared between various selected areas using a one-way repeated measures analysis of variance, followed by a Bonferroni post-hoc test. Results The RMSE of the hemipelvis was 0.25 ± 0.05 mm. The RMSE significantly decreased from the medial surface (0.28 ± 0.06mm), to the lateral surface (0.23 ± 0.06mm), to the DSA (0.04 ± 0.02mm) (p < 0.001). Conclusion The 3D-printed replicas were adequate in serving as a template for the pre-contouring of bone plates in fracture repair of pelvic fractures, particularly those that demand accurate reduction such as acetabular fractures.

Publisher

Georg Thieme Verlag KG

Subject

General Veterinary,Animal Science and Zoology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3