A Systematic Review of Automated Segmentation Methods and Public Datasets for the Lung and its Lobes and Findings on Computed Tomography Images

Author:

Carmo Diedre1,Ribeiro Jean1,Dertkigil Sergio2,Appenzeller Simone2,Lotufo Roberto1,Rittner Leticia1

Affiliation:

1. School of Electrical and Computer Engineering, University of Campinas, Brazil

2. School of Medical Sciences, University of Campinas, Brazil

Abstract

Objectives: Automated computational segmentation of the lung and its lobes and findings in X-Ray based computed tomography (CT) images is a challenging problem with important applications, including medical research, surgical planning, and diagnostic decision support. With the increase in large imaging cohorts and the need for fast and robust evaluation of normal and abnormal lungs and their lobes, several authors have proposed automated methods for lung assessment on CT images. In this paper we intend to provide a comprehensive summarization of these methods. Methods: We used a systematic approach to perform an extensive review of automated lung segmentation methods. We chose Scopus, PubMed, and Scopus to conduct our review and included methods that perform segmentation of the lung parenchyma, lobes or internal disease related findings. The review was not limited by date, but rather by only including methods providing quantitative evaluation. Results: We organized and classified all 234 included articles into various categories according to methodological similarities among them. We provide summarizations of quantitative evaluations, public datasets, evaluation metrics, and overall statistics indicating recent research directions of the field. Conclusions: We noted the rise of data-driven models in the last decade, especially due to the deep learning trend, increasing the demand for high-quality data annotation. This has instigated an increase of semi-supervised and uncertainty guided works that try to be less dependent on human annotation. In addition, the question of how to evaluate the robustness of data-driven methods remains open, given that evaluations derived from specific datasets are not general.

Publisher

Georg Thieme Verlag KG

Subject

General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3