Methanolic extract of Kigelia africana and wound healing: an in vitro study

Author:

Karatay Kadriye Busra1,Muftuler Fazilet Zumrut Biber1,Law Benedict2,Aras Omer3

Affiliation:

1. Department of Nuclear Applications, Institute of Nuclear Sciences, Ege University, Bornova, Izmir, 35100, Turkey

2. Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10021, US

3. Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, US

Abstract

Objective: Kigelia africana (Lam.) Benth. (Bignoniaceae) syn. Kigelia pinnata (Jacq. DC) is a tropical plant that is native to tropical Africa. The aim of this study was to determine if a methanolic extract prepared from Kigelia africana (KAE) can promote wound healing in treated human normal epidermal keratinocyte (HaCaT) cells and human normal foreskin fibroblast cell line (BJ) cells compared with untreated cells. Method: Experimental steps included: the methanolic extraction of the leaf and fruit of the Kigelia africana plant; the preparation of HaCaT and BJ cell lines; cell culture with a stable tetrazolium salt-based proliferation assay; and the evaluation of the wound healing effect of KAE (2μg/ml) in BJ and HaCaT cells. The phytochemical contents of KAE were determined using liquid chromatography quadrupole time-of-flight mass spectrometry. Results: The following molecules were identified as being present in the KAE, among others: cholesterol sulfate; lignoceric acid; embelin; isostearic acid; linoleic acid; dioctyl phthalate; arg-pro-thr; 15-methyl-15(S)-PGE1; sucrose; benzododecinium (Ajatin); and 9-Octadecenamide (oleamide). KAE effected faster wound healing in treated cells compared with untreated cells for both cell lines. HaCaT cells that had been mechanically injured and treated with KAE healed completely in 48 hours compared with 72 hours for untreated HaCaT cells. Treated BJ cells healed completely in 72 hours compared with 96 hours for untreated BJ cells. Concentrations of KAE up to 300μg/ml had a very low cytotoxic effect on treated BJ and HaCaT cells. Conclusion: The experimental data in this study support the potential of KAE-based wound healing treatment to accelerate wound healing.

Publisher

Mark Allen Group

Subject

Nursing (miscellaneous),Fundamentals and skills

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3