Global Ocean Forecast Accuracy Improvement Due to Optimal Sensor Placement

Author:

Turko Nikita1,Lobashev Aleksandr2,Ushakov Konstantin13,Kaurkin Maksim1,Kal'nickiy Leonid4,Semin Sergey5,Ibraev Rashit613

Affiliation:

1. Institut okeanologii im. P.P. Shirshova RAN

2. Skolkovskiy institut nauki i tehnologiy

3. Moskovskiy fiziko-tehnicheskiy institut (NIU)

4. Arkticheskiy i antarkticheskiy nauchno-issledovatel'skiy institut

5. Institut problem bezopasnogo razvitiya atomnoy energetiki RAN

6. Institut vychislitel'noy matematiki im. G.I. Marchuka RAN

Abstract

The paper examines the impact of sensor placement on the accuracy of the Global ocean state forecasting. A comparison is made between various sensor placement methods, including the arrangement obtained by the Concrete Autoencoder method. To evaluate how sensor placement affects forecast accuracy, a simulation was conducted that emulates a scenario where the initial state of the global ocean significantly deviates from the ground truth. In the experiment, initial conditions for the ocean and ice model were altered, while atmospheric forcing was retained from the control experiment. Subsequently, the model was integrated with the assimilation of data about the ground truth state at the sensor locations. The results showed that the sensor placement obtained using deep learning methods is superior in forecast accuracy to other considered arrays with a comparable number of sensors.

Publisher

Geophysical Center of the Russian Academy of Sciences

Reference38 articles.

1. Кальницкий Л. Ю., Кауркин М. Н., Ушаков К. В. и др. Сезонная изменчивость циркуляции вод и морского льда в Северном Ледовитом океане в модели высокого разрешения // Известия Российской академии наук. Физика атмосферы и океана. — 2020. — Т. 56, № 5. — С. 598—610. — DOI: 10.31857/S0002351520050065., Abbasi M. R., Chegini V., Sadrinasab M., et al. Correcting the Sea Surface Temperature by Data Assimilation Over the Persian Gulf // Iranian Journal of Science and Technology, Transactions A: Science. — 2018. — Vol. 43, no. 1. — P. 141–149. — DOI: 10.1007/s40995-017-0357-z.

2. Кауркин М. Н., Ибраев Р. А. Исследование чувствительности алгоритма усвоения малочисленных данных наблюдений в модели динамики океана // Морской гидрофизический журнал. — 2019. — Т. 35, № 2. — DOI: 10.22449/0233-7584-2019-2-105-113., Abid A., Balin M. F., Zou J. Concrete Autoencoders for Differentiable Feature Selection and Reconstruction // Cornell University. — 2019. — Vol. abs/1901.09346. — DOI: 10.48550/ARXIV.1901.09346.

3. Кошляков М. Н., Тараканов Р. Ю. Введение в физическую океанографию. — Москва : МФТИ, 2014. — 142 с., Alonso A. A., Frouzakis C. E., Kevrekidis I. G. Optimal sensor placement for state reconstruction of distributed process systems // AIChE Journal. — 2004. — Vol. 50, no. 7. — P. 1438–1452. — DOI: 10.1002/aic.10121.

4. Abbasi M. R., Chegini V., Sadrinasab M., et al. Correcting the Sea Surface Temperature by Data Assimilation Over the Persian Gulf // Iranian Journal of Science and Technology, Transactions A: Science. — 2018. — Vol. 43, no. 1. — P. 141–149. — DOI: 10.1007/s40995-017-0357-z., Boyer T. P., Antonov J. I., Baranova O. K., et al. World ocean database 2013. — U. S. Department of Commerce, National Oceanic, Atmospheric Administration, National Environmental Satellite, Data, Information Service, National Oceanographic Data Center, Ocean Climate Laboratory, 2013. — DOI: 10.7289/V5NZ85MT.

5. Abid A., Balin M. F., Zou J. Concrete Autoencoders for Differentiable Feature Selection and Reconstruction // Cornell University. — 2019. — Vol. abs/1901.09346. — DOI: 10.48550/ARXIV.1901.09346., Clark E., Askham T., Brunton S. L., et al. Greedy Sensor Placement With Cost Constraints // IEEE Sensors Journal. — 2019. — Vol. 19, no. 7. — P. 2642–2656. — DOI: 10.1109/JSEN.2018.2887044.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3