Rational polypharmacological targeting of FLT3, JAK2, ABL, and ERK1 suppresses the adaptive resistance to FLT3 inhibitors in AML

Author:

Azhar Mohammad1,Kincaid Zachary1,Kesarwani Meenu1,Menke Jacob1,Schwieterman Joshua1,Ansari Sekhu1ORCID,Reaves Angela1,Ahmed Arhama1,Shehzad Rammsha1,Khan Areeba1,Syed Nuha1,Amir Noor1,Wunderlich Mark2ORCID,Latif Tahir3,Seibel William24ORCID,Azam Mohammad125

Affiliation:

1. 1Division of Pathology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH

2. 2Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH

3. 3Department of Internal Medicine, University of Cincinnati, Cincinnati, OH

4. 4Department of Cancer Biology, University of Cincinnati, Cincinnati, OH

5. 5Department of Pediatrics, University of Cincinnati, Cincinnati, OH

Abstract

Abstract Despite significant advancements in developing selective FMS-like tyrosine kinase 3 (FLT3) inhibitors, resistance to treatment is common even on continued therapy. Acquisition of on-target mutations or adaptation to MAPK, JAK2, and ABL signaling pathways drive treatment failure and disease relapse. Although combinatorial targeting of all escape routes in preclinical models demonstrated its efficacy, the clinical application is challenging owing to drug-drug interaction and differing pharmacokinetics of the inhibitors. We reasoned that selective polypharmacological targeting could lead to a durable response with reduced toxicity. A cell-based screening was carried out to identify inhibitors targeting FLT3, RAS-MAPK, BCR-ABL, and JAK2 to target the adaptive resistance observed with FLT3 inhibitors. Here, we show that pluripotin is an equipotent inhibitor of FLT3, BCR-ABL, and JAK2 in addition to inhibiting Ras-GAP and extracellular signal-regulated kinase 1 (ERK1). Structural modeling studies revealed that pluripotin is a type II kinase inhibitor that selectively binds with inactive conformations of FLT3, ABL, and JAK2. Pluripotin showed potent inhibitory activity on both mouse and human cells expressing FLT3ITD, including clinically challenging resistant mutations of the gatekeeper residue, F691L. Likewise, pluripotin suppressed the adaptive resistance conferred by the activation of RAS-MAPK pathways, BCR-ABL, and JAK2 signaling. Treatment with pluripotin curbed the progression of acute myeloid leukemia (AML) in multiple in vivo models including patient-derived primary AML cells in mouse xenotransplants. As a proof of concept, we demonstrate that targeted polypharmacological inhibition of key signaling nodes driving adaptive resistance can provide a durable response.

Publisher

American Society of Hematology

Subject

Hematology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3