Induced cell-autonomous neutropenia systemically perturbs hematopoiesis in Cebpa enhancer-null mice

Author:

Avelino Roberto1,Mulet-Lazaro Roger2ORCID,Havermans Marije3,Hoogenboezem Remco4,Smeenk Leonie2,Salomonis Nathan5ORCID,Schneider Rebekka K6,Rombouts Elwin J.C.4,Bindels Eric7,Grimes H. Leighton8ORCID,Delwel Ruud9

Affiliation:

1. Department of Immunology, Weizmann Institute, Rehovot 76100, Israel, Israel

2. Erasmus University Medical Center and Oncode Institute, Rotterdam, Netherlands

3. Erasmus MC, Rotterdam, Netherlands

4. ErasmusMC, Rotterdam, Netherlands

5. Cincinnati Medical Center, Cincinnati, Ohio, United States

6. Institute for Biomedical Engineering, Department of Cell Biology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany, Germany

7. ErasmusMC, rottterdam, Netherlands

8. Cincinnati Childrens Hospital Medical Center, Cincinnati, Ohio, United States

9. Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands

Abstract

The transcription factor C/EBPa initiates the neutrophil gene expression program in the bone marrow. Knockouts of the Cebpa gene or its +37kb enhancer in mice show two major findings: (1) neutropenia in bone marrow and blood; (2) decrease in long-term hematopoietic stem cell (LT-HSC) numbers. Whether the latter finding is cell autonomous (intrinsic) to the LT-HSCs or an extrinsic event exerted on the stem cell compartment remained an open question. Flow cytometric analysis of the Cebpa +37kb enhancer knockout model revealed that the reduction in LT-HSC numbers observed was proportional to the degree of neutropenia. Single cell transcriptomics of wild type mouse bone marrow showed that Cebpa is predominantly expressed in early myeloid-biased progenitors, but not in LT-HSCs. These observations suggest that the negative effect on LT-HSCs is an extrinsic event caused by neutropenia. We transplanted whole bone marrows from +37kb enhancer deleted mice and found that 40% of the recipient mice acquired full blown neutropenia with severe dysplasia and a significant reduction in the total LT-HSC population. The other 60% showed initial signs of myeloid differentiation defects and dysplasia when they were sacrificed, suggesting they were in an early stage of the same pathological process. This phenotype was not seen in mice transplanted with wild type bone marrow cells. Altogether, these results indicate that Cebpa-enhancer deletion causes cell autonomous neutropenia, which reprograms and disturbs the quiescence of HSCs, leading to a systemic impairment of the hematopoietic process.

Publisher

American Society of Hematology

Subject

Hematology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3