Association of granulocyte-macrophage colony-stimulating factor with the crystalloid granules of human eosinophils

Author:

Levi-Schaffer F1,Lacy P1,Severs NJ1,Newman TM1,North J1,Gomperts B1,Kay AB1,Moqbel R1

Affiliation:

1. Department of Allergy and Clinical Immunology, Royal Brompton Hospital, London, UK.

Abstract

We have previously shown that normal-density human peripheral blood eosinophils transcribe and translate mRNA for granulocyte-macrophage colony-stimulating factor (GM-CSF) and that the intracellular distribution was granular as assessed by light microscopy immunocytochemistry. The present study was conducted to confirm this apparent association between GM-CSF and the crystalloid granule using a subcellular fractionation method for human eosinophils and immunogold electron microscopy (EM). Highly purified (> 99%, by negative selection using anti-CD16 immunomagnetic microbeads) human peripheral blood eosinophils were obtained from four asthmatic subjects (not taking systemic medication), homogenized and density fractionated (5 x 10(7) cells/subject) on linear Nycodenz gradients. Twenty-four fractions were collected from each cell preparation and analyzed for marker enzyme activities as well as total protein. Dot blot analysis with specific monoclonal antibodies (MoAbs) was used to detect the eosinophil granule proteins major basic protein (MBP) and eosinophil cationic protein (ECP). An anti-CD9 MoAb was used as an eosinophil plasma membrane marker. Lactate dehydrogenase (LDH) was used as a cytosolic marker. Immunoreactivity for GM-CSF was detected by a specific enzyme-linked immunosorbent assay using a polyclonal antihuman GM-CSF antibody and confirmed by dot blot. GM-CSF coeluted with the cellular fractions containing granule markers (MBP, ECP, eosinophil peroxidase, hexosaminidase, and arylsulphatase), but not those containing cytoplasm (LDH+) or membrane (CD9+) markers. EM examination of pooled fractions associated with the peak of GM-CSF immunoreactivity confirmed that they contained crystalloid and small granules, but not plasma membrane. In addition, quantification, using immunogold labeling with an anti/GM-CSF MoAb, indicated preferential localization of gold particles over the eosinophil granule cores of intact cells. Thus, our results indicate that GM-CSF resides as a granule-associated, stored mediator in unstimulated human eosinophils.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Immunofluorescence analysis of human eosinophils;Journal of Immunological Methods;2024-03

2. Human monocytes store and secrete preformed CCL5, independent of de novo protein synthesis;Journal of Leukocyte Biology;2021-06-11

3. Eosinophil Shape Change and Secretion;Methods in Molecular Biology;2021

4. Innate Immunity and Inflammation;Comprehensive Toxicology;2018

5. Eosinophil Cytokines in Allergy;Cytokine Effector Functions in Tissues;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3