Expression of integrins and examination of their adhesive function in normal and leukemic hematopoietic cells

Author:

Liesveld JL1,Winslow JM1,Frediani KE1,Ryan DH1,Abboud CN1

Affiliation:

1. Hematology Unit, University of Rochester Medical Center, NY 14642.

Abstract

Abstract Adhesion of hematopoietic progenitor cells to marrow-derived adherent cells has been noted for erythroid, myeloid, and lymphoid precursors. In this report, we have characterized very late antigen (VLA) integrin expression on normal CD34+ marrow progenitors, on leukemic cell lines, and on blasts from patients with acute myelogenous or monocytic leukemias. CD34+ progenitor cells expressed the integrin beta 1 chain (CD29), VLA-4 alpha (CD49d), and VLA-5 alpha (CD49e). The myeloid lines KG1 and KG1a also expressed CD49d and CD49e as did the Mo7e megakaryoblastic line. CD29, CD18, and CD11a were also present on each of these cell lines. Only the Mo7e line expressed the cytoadhesins GPIIbIIIa or GPIb. Binding of KG1a to marrow stroma was partially inhibited by antibodies to CD49d and its ligand, vascular cell adhesion molecule (VCAM-1). The majority of leukemic blasts studied expressed CD49d and CD49e as well. Blasts from patients with acute myelomonocytic leukemia consistently bound to stroma at levels greater than 20%, and adhesion to stroma could in some cases be partly inhibited by anti- CD49d. No role for glycosylphosphatidyl-inositol (GPI)-linked structures was demonstrated in these binding assays because the adhesion of leukemic blasts to stroma was not diminished after treatment with phosphatidylinositol-specific phospholipase C (PI-PLC). These studies indicate that CD34+ myeloid progenitors, myeloid leukemic cell lines, and leukemic blasts possess a similar array of VLA integrins. Their functional importance individually or in combination with other mediators of attachment in adhesion, transendothelial migration, and differentiation has yet to be fully elucidated.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3