Stromal support enhances cell-free retroviral vector transduction of human bone marrow long-term culture-initiating cells

Author:

Moore KA1,Deisseroth AB1,Reading CL1,Williams DE1,Belmont JW1

Affiliation:

1. Institute for Molecular Genetics, Baylor College of Medicine, Houston, TX 77030.

Abstract

Gene transfer into hematopoietic stem cells by cell-free virions is a goal for gene therapy of hematolymphoid disorders. Because the hematopoietic microenvironment provided by the stroma is required for stem cell maintenance both in vivo and in vitro, we reasoned that cell- free transduction of bone marrow cells (BMC) may be aided by stromal support. We used two high-titer replication-defective retroviral vectors to differentially mark progenitor cells. The transducing vector was shown to be a specific DNA fragment by polymerase chain reaction of colony-forming cells derived from progenitors maintained in long-term culture (LTC). BMC were infected separately by cell-free virions with or without pre-established, irradiated, allogeneic stromal layers, and in the presence or absence of exogenous growth factors (GF). The GF assessed were interleukin-3 (IL-3) and IL-6 in combination, leukemia inhibitory factor (LIF), mast cell growth factor (MGF), and LIF and MGF in combination. In addition, we developed a competitive LTC system to directly assess the effect of infection conditions on the transduction of clonogenic progenitors as reflected by the presence of a predominate provirus after maintenance in the same microenvironment. The results show gene transfer into human LTC-initiating cells by cell-free retroviral vector and a beneficial effect of stromal support allowing a transduction efficiency of 64.6% in contrast to 15.8% without a supporting stromal layer. A high transduction rate was achieved independent of stimulation with exogenous GF. We propose that autologous marrow stromal support during the transduction period may have application in clinical gene therapy protocols.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3