2,3-Diphosphoglycerate and intracellular pH as interdependent determinants of the physiologic solubility of deoxyhemoglobin S

Author:

Poillon WN1,Kim BC1

Affiliation:

1. Center for Sickle Cell Disease, Howard University, Washington, DC 20059.

Abstract

Abstract We have established that 2,3-diphosphoglycerate (2,3-DPG) content and intracellular pH exert separate, but interdependent, effects on the equilibrium solubility (csat) of deoxyhemoglobin S (deoxy-Hb S) that act in concert to modulate intraerythrocytic polymer formation. In a nonphysiologic csat assay system, a steep dependence of csat on pH in the physiologic range 7.0 to 7.6 was shown for both stripped (Hb) and DPG-saturated deoxy-Hb S (Hb-DPG). The solubility-pH profile for Hb under near-physiologic buffer conditions also showed that csat increased steeply in the same pH range (6.8 to 7.6). The effect of 2,3- DPG on csat under near-physiologic conditions was evaluated separately. At pH 7.20, the pH of the human red blood cell, csat values for Hb and Hb-DPG were 19.56 +/- 0.14 and 17.95 +/- 0.45 g/dL, respectively, indicating that the solubility of Hb-DPG is lower than that of Hb by 8.2% +/- 2.3%. Thus, binding of 2,3-DPG in the beta-cleft promotes the polymerization of deoxy-Hb S, the ultimate determinant of cell sickling. Furthermore, because of the abnormal Bohr effect of sickle blood (approximately double that of normal blood), the intracellular pH of deoxygenated sickle erythrocytes should be approximately 0.28 pH unit higher than that of oxygenated cells (ie, 7.41 v 7.13). At the higher pH, the corresponding csat for Hb-DPG is 20.22 g/dL, which is the best estimate of the intrinsic solubility of T-state Hb S under conditions that approximate closely those of pH, temperature, ionic strength, and 2,3-DPG saturation in the fully desaturated sickle erythrocyte.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3