An isozyme of hexokinase specific for the human red blood cell (HKR) [see comments]

Author:

Murakami K1,Blei F1,Tilton W1,Seaman C1,Piomelli S1

Affiliation:

1. Division of Pediatric Hematology/Oncology, Columbia University College of Physicians and Surgeons, New York, NY 10032.

Abstract

Abstract The hexokinase (HK) of the human red blood cell (RBC) was separated into two distinct major isozymes by fast protein liquid chromatography using a linear salt gradient on a MonoQ column. The first isozyme (HKI) eluted as a sharp peak at the same position as HKI of human liver. The second isozyme eluted between HKI and HKII of human white blood cells, and it appeared to be unique to the RBC (it was designated HKR). From a gel filtration column, HKR eluted before HKI, suggesting that it was larger than HKI by several kilodaltons. In a mitochondria-enriched fraction from human reticulocytes, no HKR was found; thus, HKR was not a mitochondrial enzyme. Despite these differences in chromatographic behavior, size, and mitochondrial binding, both forms behaved kinetically as HKI. RBC from normal blood contained HKI and HKR at an equal activity, but in reticulocyte-rich RBC, HKR dominated. When RBC of increasing age was separated by buoyant density ultracentrifugation, the total HK activity decayed in a biphasic manner, with half-lives respectively of approximately 15 and approximately 51 days. When isolated by MonoQ column from each age-separated fraction, HKR was the major form in the youngest RBC, and decreased rapidly with cell age, with a t 1/2 of approximately 10 days, representing a negligible activity in the oldest RBC. Instead, HKI was relatively stable through the entire life span of the RBC, with a t 1/2 of approximately 66 days. Thus, HKR appears to be an RBC-specific isozyme that is predominant in the reticulocyte and is then rapidly degraded. During maturation of the RBC, the fast decay of HKR contributes to the early sharp decline of HK activity and the slow decay of HKI to the later gradual decline.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3