Consistent involvement of the bcr gene by 9;22 breakpoints in pediatric acute leukemias

Author:

Suryanarayan K1,Hunger SP1,Kohler S1,Carroll AJ1,Crist W1,Link MP1,Cleary ML1

Affiliation:

1. Department of Pathology, Stanford University School of Medicine, CA 94305–5324.

Abstract

Abstract To investigate the relationship of bcr-abl fusion mRNAs with childhood acute lymphoblastic leukemias (ALL), we examined 27 pediatric Philadelphia chromosome (Ph1)-positive acute leukemias using a reverse polymerase chain reaction (PCR) procedure. In cells from 24 leukemias, single bcr-abl PCR products were detected that corresponded to breakpoints in the minor breakpoint cluster region (mbcr in intron 1 of the bcr gene) associated with production of the P190 fusion protein. Cells from the three remaining leukemias contained breakpoints in the major breakpoint cluster region (Mbcr) as shown by PCR and Southern blot analyses. These three leukemias also contained low levels of the mbcr PCR product that may have resulted from alternative splicing of the bcr-abl precursor RNA. A screen of 35 additional leukemias from patients who failed therapy before day 180 (induction failures or early relapses) found one case with unsuccessful cytogenetics to express Mbcr- abl RNA. All four children with Mbcr breakpoints had white blood cell levels in excess of 250,000 at presentation (compared with 2 of 24 with mbcr breakpoints) and two had hematologic and clinical features suggestive of chronic myelogenous leukemias (CML) in lymphoid blast crisis. Our results indicate that in Ph1-positive pediatric leukemias, all 9;22 breakpoints occur in one of the two known breakpoint cluster regions in the bcr gene on chromosome 22. The reverse PCR reliably detected all patients with cytogenetic t(9;22) and is capable of detecting additional Ph1-positive leukemias that are missed by standard cytogenetics. Furthermore, the Mbcr-type breakpoint, associated with production of p210, can be seen in childhood leukemias presenting either as clinical ALL or as apparent lymphoid blast crisis of CML, suggesting that t(9;22) breakpoint locations do not exclusively determine the biologic and clinical features of pediatric Ph1-positive ALL.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3