Gene expression networks underlying retinoic acid–induced differentiation of acute promyelocytic leukemia cells

Author:

Liu Ting-Xi1,Zhang Ji-Wang1,Tao Jiong1,Zhang Ruo-Bo1,Zhang Qing-Hua1,Zhao Chun-Jun1,Tong Jian-Hua1,Lanotte Michel1,Waxman Samuel1,Chen Sai-Juan1,Mao Mao1,Hu Geng-Xi1,Zhu Li1,Chen Zhu1

Affiliation:

1. From the Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Second Medical University, the Institute of Cell Biology, Chinese Academy of Sciences, and the Chinese National Human Genome Center at Shanghai, Shanghai, China; Clontech Laboratories, Palo Alto, CA; the Division of Neoplastic Diseases, Department of Medicine, Mount Sinai Medical Center, New York, NY; and Institute National de la Santé et de la Recherche Medicalé(INSERM) Unité, Hospital Saint Louis, Paris, France.

Abstract

To elucidate the molecular mechanism of all-trans-retinoic acid (ATRA)–induced differentiation of acute promyelocytic leukemia (APL) cells, the gene expression patterns in the APL cell line NB4 before and after ATRA treatment were analyzed using complementary DNA array, suppression-subtractive hybridization, and differential-display–polymerase chain reaction. A total of 169 genes, including 8 novel ones, were modulated by ATRA. The ATRA-induced gene expression profiles were in high accord with the differentiation and proliferation status of the NB4 cells. The time courses of their modulation were interesting. Among the 100 up-regulated genes, the induction of expression occurred most frequently 12-48 hours after ATRA treatment, while 59 of 69 down-regulated genes found their expression suppressed within 8 hours. The transcriptional regulation of 8 induced and 24 repressed genes was not blocked by cycloheximide, which suggests that these genes may be direct targets of the ATRA signaling pathway. A balanced functional network seemed to emerge, and it formed the foundation of decreased cellular proliferation, maintenance of cell viability, increased protein modulation, and promotion of granulocytic maturation. Several cytosolic signaling pathways, including JAKs/STAT and MAPK, may also be implicated in the symphony of differentiation.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3