Lymphocyte microvilli are dynamic, actin-dependent structures that do not require Wiskott-Aldrich syndrome protein (WASp) for their morphology

Author:

Majstoravich Sonja1,Zhang Jinyi1,Nicholson-Dykstra Susan1,Linder Stefan1,Friedrich Wilhelm1,Siminovitch Katherine A.1,Higgs Henry N.1

Affiliation:

1. From the Department of Biochemistry, Dartmouth Medical School, Hanover, NH; the Departments of Medicine, Immunology, and Medical Genetics and Microbiology, Univerisity of Toronto, Toronto, ON, Canada; Samuel Lunenfeld and Toronto General Research Institutes, Toronto, ON, Canada; Institut fuer Prophylaxe und Epidemiologie der Kreislaufkrankheiten, Ludwig-Maximilians-Universitaet, Muenchen, Germany; and Universitätskinderklinik, Ulm, Germany.

Abstract

AbstractShort microvilli cover the surfaces of circulating mammalian lymphocytes. The surfaces of monocytes and neutrophils are very different, containing ruffles as their predominant structure. In this study, we present the first quantitative characterization of lymphocyte microvilli. From analysis of scanning electron micrographs, we find that median microvillar length and surface density range from 0.3 to 0.4 μm and 2 to 4 microvilli/μm2, respectively, on lymphocytes from a variety of sources. As with similar structures from other cells, lymphocyte microvilli contain parallel bundles of actin filaments. Lymphocyte microvilli rapidly disassemble when exposed to the actin-sequestering molecule, Latrunculin A. This disassembly parallels cellular actin filament depolymerization and is complete within 2 minutes, suggesting that lymphocyte microvilli undergo continuous assembly and disassembly. In contrast to previous reports suggesting lymphocyte microvillar density to be reduced on lymphocytes from Wiskott-Aldrich syndrome (WAS) patient, we find no such deficiency in either mouse or human WAS protein (WASp)–deficient lymphocytes. These results suggest that WASp is either not involved in or is redundant in the rapid dynamics of lymphocyte microvilli.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 135 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3