Annexin 1 and its bioactive peptide inhibit neutrophil-endothelium interactions under flow: indication of distinct receptor involvement

Author:

Hayhoe Richard P. G.1,Kamal Ahmad M.1,Solito Egle1,Flower Roderick J.1,Cooper Dianne1,Perretti Mauro1

Affiliation:

1. From the Centre for Biochemical Pharmacology, The William Harvey Research Institute, London; and the Department of Cellular and Molecular Neuroscience, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom.

Abstract

We have tested the effects of annexin 1 (ANXA1) and its N-terminal peptide Ac2-26 on polymorphonuclear leukocyte (PMN) recruitment under flow. Differential effects of the full-length protein and its peptide were observed; ANXA1 inhibited firm adhesion of human PMNs, while Ac2-26 significantly attenuated capture and rolling without effect on firm adhesion. Analysis of the effects of ANXA1 and Ac2-26 on PMN adhesion molecule expression supported the flow chamber results, with Ac2-26 but not ANXA1 causing l-selectin and PSGL-1 shedding. ANXA1 and its peptide act via the FPR family of receptors. This was corroborated using HEK-293 cells transfected with FPR or FPRL-1/ALX (the 2 members of this family expressed by human PMNs). While Ac2-26 bound both FPR and FPRL-1/ALX, ANXA1 bound FPRL-1/ALX only. ANXA1 and Ac2-26 acted as genuine agonists; Ac2-26 binding led to ERK activation in both FPR- and FPRL-1/ALX-transfected cells, while ANXA1 caused ERK activation only in cells transfected with FPRL-1/ALX. Finally, blockade of FPRL-1/ALX with a neutralizing monoclonal antibody was found to abrogate the effects of ANXA1 in the flow chamber but was without effect on Ac2-26-mediated inhibition of rolling. These findings demonstrate for the first time distinct mechanisms of action for ANXA1 and its N-terminal peptide Ac2-26.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Reference61 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3