Transient blockade of the inducible costimulator pathway generates long-term tolerance to factor VIII after nonviral gene transfer into hemophilia A mice

Author:

Peng Baowei1,Ye Peiqing1,Blazar Bruce R.2,Freeman Gordon J.3,Rawlings David J.1,Ochs Hans D.1,Miao Carol H.1

Affiliation:

1. Department of Pediatrics, Seattle Children's Hospital Research Institute and University of Washington, Seattle;

2. Department of Pediatrics, Division of Blood and Marrow Transplantation, and the Cancer Center, University of Minnesota, Minneapolis; and

3. Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA

Abstract

Abstract Formation of inhibitory antibodies is a common problem encountered in clinical treatment for hemophilia. Human factor VIII (hFVIII) plasmid gene therapy in hemophilia A mice also leads to strong humoral responses. We demonstrate that short-term therapy with an anti-ICOS monoclonal antibody to transiently block the inducible costimulator/inducible costimulator ligand (ICOS/ICOSL) signaling pathway led to sustained tolerance to hFVIII in hFVIII plasmid–treated hemophilia A mice and allowed persistent, high-level FVIII functional activity (100%-300% of normal). Anti-ICOS treatment resulted in depletion of ICOS+CD4+ T cells and activation of CD25+Foxp3+ Tregs in the peripheral blood, spleen, and lymph nodes. CD4+ T cells from anti-ICOS–treated mice did not proliferate in response to hFVIII stimulation and produced high levels of regulatory cytokines, including interleukin-10 and transforming growth factor-β. Moreover, CD4+CD25+ Tregs from tolerized mice adoptively transferred dominant tolerance in syngeneic hFVIII plasmid-treated hemophilia A mice and reduced the production of antibodies against FVIII. Anti-ICOS–treated mice tolerized to hFVIII generated normal primary and secondary antibody responses after immunization with the T-dependent antigen, bacteriophage Φx 174, indicating maintenance of immune competency. Our data indicate that transient anti-ICOS monoclonal antibody treatment represents a novel single-agent immunomodulatory strategy to overcome the immune responses against transgene product after gene therapy.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3