Understanding platelet generation from megakaryocytes: implications for in vitro–derived platelets

Author:

Sim Xiuli12,Poncz Mortimer34,Gadue Paul156,French Deborah L.156

Affiliation:

1. Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA;

2. Department of Cell and Molecular Biology, University of Pennsylvania School of Medicine, Philadelphia, PA;

3. Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA;

4. Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA;

5. Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia PA; and

6. Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA

Abstract

Abstract Platelets are anucleate cytoplasmic discs derived from megakaryocytes that circulate in the blood and have major roles in hemostasis, thrombosis, inflammation, and vascular biology. Platelet transfusions are required to prevent the potentially life-threatening complications of severe thrombocytopenia seen in a variety of medical settings including cancer therapy, trauma, and sepsis. Platelets used in the clinic are currently donor-derived which is associated with concerns over sufficient availability, quality, and complications due to immunologic and/or infectious issues. To overcome our dependence on donor-derived platelets for transfusion, efforts have been made to generate in vitro–based platelets. Work in this area has advanced our understanding of the complex processes that megakaryocytes must undergo to generate platelets both in vivo and in vitro. This knowledge has also defined the challenges that must be overcome to bring in vitro–based platelet manufacturing to a clinical reality. This review will focus on our understanding of committed megakaryocytes and platelet release in vivo and in vitro, and how this knowledge can guide the development of in vitro–derived platelets for clinical application.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3