Gene expression profiling of pediatric acute myelogenous leukemia

Author:

Ross Mary E.1,Mahfouz Rami1,Onciu Mihaela1,Liu Hsi-Che1,Zhou Xiaodong1,Song Guangchun1,Shurtleff Sheila A.1,Pounds Stanley1,Cheng Cheng1,Ma Jing1,Ribeiro Raul C.1,Rubnitz Jeffrey E.1,Girtman Kevin1,Williams W. Kent1,Raimondi Susana C.1,Liang Der-Cherng1,Shih Lee-Yung1,Pui Ching-Hon1,Downing James R.1

Affiliation:

1. From the Departments of Hematology-Oncology, Pathology, Biostatistics, and the Hartwell Center for Bioinformatics and Biotechnology, St Jude Children's Research Hospital, Memphis, TN; the Division of Pediatric Hematology-Oncology, Mackay Memorial Hospital, and the Division of Hematology-Oncology, Chang Gung Memorial Hospital, Taipei, Taiwan.

Abstract

Contemporary treatment of pediatric acute myeloid leukemia (AML) requires the assignment of patients to specific risk groups. To explore whether expression profiling of leukemic blasts could accurately distinguish between the known risk groups of AML, we analyzed 130 pediatric and 20 adult AML diagnostic bone marrow or peripheral blood samples using the Affymetrix U133A microarray. Class discriminating genes were identified for each of the major prognostic subtypes of pediatric AML, including t(15;17)[PML-RARα], t(8;21)[AML1-ETO], inv16 [CBFβ-MYH11], MLL chimeric fusion genes, and cases classified as FAB-M7. When subsets of these genes were used in supervised learning algorithms, an overall classification accuracy of more than 93% was achieved. Moreover, we were able to use the expression signatures generated from the pediatric samples to accurately classify adult de novo AMLs with the same genetic lesions. The class discriminating genes also provided novel insights into the molecular pathobiology of these leukemias. Finally, using a combined pediatric data set of 130 AMLs and 137 acute lymphoblastic leukemias, we identified an expression signature for cases with MLL chimeric fusion genes irrespective of lineage. Surprisingly, AMLs containing partial tandem duplications of MLL failed to cluster with MLL chimeric fusion gene cases, suggesting a significant difference in their underlying mechanism of transformation.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3