Oxidative stress in angiogenesis and vascular disease

Author:

Kim Young-Woong1,Byzova Tatiana V.1

Affiliation:

1. Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH

Abstract

Abstract Despite the damaging effect on tissues at a high concentration, it has been gradually established that oxidative stress plays a positive role during angiogenesis. In adults, physiological or pathological angiogenesis is initiated by tissue demands for oxygen and nutrients, resulting in a hypoxia/reoxygenation cycle, which, in turn promotes the formation of reactive oxygen species (ROS). The ROS can be generated either endogenously, through mitochondrial electron transport chain reactions and nicotinamide adenine dinucleotide phosphate oxidase, or exogenously, resulting from exposure to environmental agents, such as ultraviolet or ionizing radiation. In many conditions, ROS promotes angiogenesis, either directly or via the generation of active oxidation products, including peroxidized lipids. The latter lipid metabolites are generated in excess during atherosclerosis, thereby linking atherogenic processes and pathological angiogenesis. Although the main mechanism of oxidative stress-induced angiogenesis involves hypoxia-inducible factor/vascular endothelial growth factor (VEGF) signaling, recent studies have identified several pathways that are VEGF-independent. This review aims to provide a summary of the past and present views on the role of oxidative stress as a mediator and modulator of angiogenesis, and to highlight newly identified mechanisms.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 501 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3