Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells

Author:

Kocabas Fatih1,Zheng Junke23,Thet Suwannee1,Copeland Neal G.4,Jenkins Nancy A.4,DeBerardinis Ralph J.5,Zhang Chengcheng2,Sadek Hesham A.1

Affiliation:

1. Department of Internal Medicine, Division of Cardiology, and

2. Departments of Physiology and Developmental Biology, UT Southwestern Medical Center, Dallas, TX;

3. Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine, Shanghai, China;

4. The Methodist Hospital Research Institute, Houston, TX; and

5. Departments of Pediatrics and Genetics, UT Southwestern Medical Center, Dallas, TX

Abstract

Abstract The role of Meis1 in leukemia is well established, but its role in hematopoietic stem cells (HSCs) remains poorly understood. Previously, we showed that HSCs use glycolytic metabolism to meet their energy demands. However, the mechanism of regulation of HSC metabolism, and the importance of maintaining this distinct metabolic phenotype on HSC function has not been determined. More importantly, the primary function of Meis1 in HSCs remains unknown. Here, we examined the effect of loss of Meis1 on HSC function and metabolism. Inducible Meis1 deletion in adult mouse HSCs resulted in loss of HSC quiescence, and failure of bone marrow repopulation after transplantation. While we previously showed that Meis1 regulates Hif-1α transcription in vitro, we demonstrate here that loss of Meis1 results in down-regulation of both Hif-1α and Hif-2α in HSCs. This resulted in a shift to mitochondrial metabolism, increased reactive oxygen species production, and apoptosis of HSCs. Finally, we demonstrate that the effect of Meis1 knockout on HSCs is entirely mediated through reactive oxygen species where treatment of the Meis1 knockout mice with the scavenger N-acetylcystein restored HSC quiescence and rescued HSC function. These results uncover an important transcriptional network that regulates metabolism, oxidant defense, and maintenance of HSCs.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 179 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3