Human endothelial cells derived from circulating progenitors display specific functional properties compared with mature vessel wall endothelial cells

Author:

Bompais Heidi1,Chagraoui Jalila1,Canron Xavier1,Crisan Mihaela1,Liu Xu Hui1,Anjo Aurora1,Tolla-Le Port Carine1,Leboeuf Marylene1,Charbord Pierre1,Bikfalvi Andreas1,Uzan Georges1

Affiliation:

1. From INSERM U506, Hôpital Paul Brousse, Villejuif, France; INSERM EPI 0113 Bordeaux, France; Institut du Cancer et d'Immunogénétique, Hôpital Paul Brousse, Villejuif, France; and Laboratoire d'Hématopoïèse, Faculté de Médecine, Tours, France.

Abstract

Abstract Endothelial progenitor cells (EPCs) were shown to be present in systemic circulation and cord blood. We investigated whether EPCs display specific properties compared with mature endothelial cells. Human cord blood CD34+ cells were isolated and adherent cells were amplified under endothelial conditions. Expression of specific markers identified them as endothelial cells, also called endothelial progenitor-derived cells (EPDCs). When compared to mature endothelial cells, human umbilical vein endothelial cells (HUVECs) and human bone marrow endothelial cells (HBMECs), endothelial markers, were expressed to the same extent except for KDR, which is expressed more in EPDCs. They display a higher proliferation potential. Functional studies demonstrated that EPDCs were more sensitive to angiogenic factors, which afford these cells greater protection against cell death compared with HUVECs. Moreover, EPDCs exhibit more hematopoietic supportive activity than HUVECs. Finally, studies in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice demonstrated that human circulating EPCs are able to colonize a Matrigel plug. EPDCs display the morphology and phenotype of endothelial cells. Their functional features indicate, however, that although these cells have undergone some differentiation steps, they still have the properties of immature cells, suggesting greater tissue repair capabilities. Future use of in vitro amplified peripheral blood EPDCs may constitute a challenging strategy for cell therapy.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3