An evolutionarily conserved PTEN-C/EBPα-CTNNA1 axis controls myeloid development and transformation

Author:

Fu Chun-Tang1,Zhu Kang-Yong1,Mi Jian-Qing1,Liu Yuan-Fang1,Murray Susan T.2,Fu Yan-Fang1,Ren Chun-Guang1,Dong Zhi-Wei1,Liu Yi-Jie1,Dong Mei1,Jin Yi1,Chen Yi1,Deng Min1,Zhang Wu1,Chen Bin1,Breslin Peter3,Chen Sai-Juan1,Chen Zhu1,Becker Michael W.2,Zhu Jiang1,Zhang Ji-Wang3,Liu Ting Xi145

Affiliation:

1. Key Laboratory of Stem Cell Biology and State Key Laboratory for Medical Genomics and Laboratory of Development and Diseases, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, and Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China;

2. Division of Hematology/Oncology, University of Rochester, NY;

3. Pathology Department, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL;

4. Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; and

5. Model Organism Division, E-Institutes of Shanghai Universities, Shanghai, People's Republic of China

Abstract

AbstractLoss of function of tumor suppressor genes, such as PTEN, CEBPΑ, and CTNNA1 (encoding the α-catenin protein), has been found to play an essential role in leukemogenesis. However, whether these genes genetically interact remains largely unknown. Here, we show that PTEN-mammalian target of rapamycin signaling acts upstream to dictate the ratio of wild-type p42 C/EBPα to its dominant-negative p30 isoform, which critically determines whether p30 C/EBPα (lower p42/p30 ratio) or p42 C/EBPα (higher p42/p30 ratio) binds to the proximal promoter of the retained CTNNA1 allele. Binding of p30 C/EBPα recruits the polycomb repressive complex 2 to suppress CTNNA1 transcription through repressive H3K27me3 modification, whereas binding of p42 C/EBPα relieves this repression and promotes CTNNA1 expression through activating H3K4me3 modification. Loss of Pten function in mice and zebrafish induces myelodysplasia with abnormal invasiveness of myeloid progenitors accompanied by significant reductions in both wild-type C/EBPα and α-catenin protein. Importantly, frame-shift mutations in either PTEN or CEBPA were detected exclusively in the primary LICs with low CTNNA1 expression. This study uncovers a novel molecular pathway, PTEN-C/EBPα-CTNNA1, which is evolutionarily conserved and might be therapeutically targeted to eradicate LICs with low CTNNA1 expression.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3