Detection of Measurable Residual Disease (MRD) in Peripheral Blood: First Report of a Novel Microfluidic Platform in Patients with Acute Myeloid Leukemia (AML)

Author:

Foster Matthew C1,Fedoriw Yuri1,Pulley Will1,Zeidner Joshua1,Coombs Catherine C.1,Mirkin Emily2,Zomorrodi Maryam2,Toughiri Rachel2,Bartakova Alena2,Carson Craig2,Muller Rolf2,Armistead Paul M.1

Affiliation:

1. Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC

2. BioFluidica, San Diego, CA

Abstract

Background: Despite therapeutic advances, AML remains a disease in which the majority of patients relapse after attaining remission. The presence of bone marrow MRD is associated with impending AML relapse. Prediction and prevention of relapse could improve outcomes, but most current MRD tests either require bone marrow aspirate or detect individualized molecular genetic features present in a minority of AML. Furthermore, bone marrow MRD assessments are impractical if performed frequently enough to detect most early relapses. We developed and tested a novel microfluidic chip device (MCD) that can quantitate cell numbers using automated methods and explored its ability to detect low levels of peripheral blood leukemic cells with aberrant immunophenotypes. Methods: The MCD contains sinusoidal capture channels that were coated with antibodies with specificity towards one of the commonly expressed markers found on immature myeloid cells--CD33, CD34 and CD117 (capture antigens). Initial spiking experiments used fluorescently labeled leukemia cell lines HL60 (CD33+), KG1 (CD34+), Kasumi1 (CD117+) spiked into a 5000 cell/mL suspension. Cell suspensions were passed through MCDs coated with a capture antigen known to be expressed on the tested cell line. These experiments established an efficient capture using a flow rate of 1mL/sec. Then, AML patients with an aberrant immunophenotype were enrolled in a pilot study either at the start of induction chemotherapy or prior to allogeneic stem cell transplant (SCT). For patients receiving induction chemotherapy, whole blood samples were obtained monthly starting at the time of remission assessment, or monthly starting prior to SCT. Buffered whole blood was passed through MCDs coated with a capture antigen known to be expressed on patient myeloblasts. The captured cells were then released, eluted, centrifuged and plated on a glass slide. Plated cell pellets were then labeled with fluorescent antibodies targeting surface proteins known to be aberrantly (either by lineage infidelity or asynchronous expression) expressed on the patients' AML blasts. Automated fluorescence microscopy was used to identify and quantify captured cells with the known aberrant immunophenotype of the AML blasts. Descriptive statistics described serial cell counts in patients maintaining remission and relapsing patients. Results: Of 31 patients who have been enrolled in the study to date, 13 had at least 3 post-remission MCD analyses. Of these patients, 6 had either morphologic relapse or persistent/rising marrow MRD. In these patients, there was a trend towards higher initial aberrant immunophenotype cell counts, with mean initial count = 59 (95% CI 1, 108), compared to other patients with mean initial count = 15 (95% CI 5, 25). Of 5 patients who relapsed with MCD data within 1 month prior to relapse, the mean absolute rise prior to relapse above minimum MCD cell count was 54 (95% CI 2, 105), in comparison to non-relapsing patients with mean rise of 9 (95% CI 3, 15). From the initial 16 patients, 10 underwent induction therapy (the other 6 were enrolled prior to SCT). In these 10 patients there was a non-significant association between peripheral blood aberrant immunophenotype cells and remission status following induction. A total of 8 patients underwent allogeneic SCT. Two of these patients had known bone marrow MRD at the time of SCT and had a statistically significant greater number of aberrant immunophenotypic cells pre-SCT (48 and 60) compared to the 6 MRD negative patients (median = 12, range 9, 42). Conclusions: A novel MCD assay can reliably capture and detect low numbers of AML blasts from peripheral blood using immunofluorescent imaging and automated cell counts to quantify leukemia cells with aberrant immunophenotypes. Because this method uses peripheral blood, frequent sampling is feasible and of minimal risk to patients. An ongoing clinical trial will further explore the associations between MCD-based cell enumeration and clinical endpoints in AML patients that were suggested in the pilot phase of this study. Because the MCD releases trace populations of viable cells, additional experiments, such as primary cell culturing and single cell sequencing, are possible. Figure Disclosures Foster: Bellicum Pharmaceuticals, Inc: Research Funding; Daiichi Sankyo: Consultancy; MacroGenics: Research Funding; Celgene: Research Funding. Fedoriw:Alexion Pharmaceuticals: Consultancy, Speakers Bureau. Zeidner:Celgene: Consultancy, Honoraria, Research Funding; AsystBio Laboratories: Consultancy; Merck: Research Funding; Covance: Consultancy; Pfizer: Honoraria; Agios: Honoraria; Daiichi Sankyo: Honoraria; Tolero: Honoraria, Research Funding. Coombs:Covance: Consultancy; Octopharma: Honoraria; Medscape: Honoraria; Cowen & Co.: Consultancy; Loxo: Honoraria; H3 Biomedicine: Honoraria; Dedham Group: Consultancy; Pharmacyclics: Honoraria; Abbvie: Consultancy. Mirkin:BioFluidica: Employment. Zomorrodi:BioFluidica: Employment. Toughiri:BioFluidica: Employment. Bartakova:BioFluidica: Employment. Carson:BioFluidica: Employment. Muller:BioFluidica: Employment.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3