Contributions of TRAIL-mediated megakaryocyte apoptosis to impaired megakaryocyte and platelet production in immune thrombocytopenia

Author:

Yang Lei1,Wang Lin1,Zhao Chun-hong2,Zhu Xiao-juan13,Hou Yu4,Jun Peng15,Hou Ming15

Affiliation:

1. Hematology Oncology Centre, Qilu Hospital, Shandong University, Jinan, China;

2. Yantai Yantaishan Hospital, Yantai, China;

3. Department of General Medicine, Provincial Hospital, affiliated to Shandong University, Jinan, China;

4. Medical College, Shandong University, Jinan, China; and

5. Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Jinan, China

Abstract

Abstract Recent in vitro studies provide evidence for autoantibody-induced suppression of megakaryocytopoiesis and show a reduction in megakaryocyte production and maturation in the presence of immune thrombocytopenia (ITP) plasma. Here, we present CD34+ cells from healthy umbilical cord blood mononuclear cells cultured in medium containing thrombopoietin, stem cell factor, interleukin-3, and 10% plasma from either ITP patients or healthy subjects. The quantity, quality, and apoptosis of megakaryocytes were measured. We observed that most ITP plasma boosted megakaryocyte quantity but impaired quality, resulting in significantly less polyploidy cells (N ≥ 4) and platelet release. In these megakaryocytes, we found a lower percentage of cell apoptosis, a lower expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), and a higher expression of Bcl-xL. Furthermore, there was a decrease of sTRAIL in ITP plasma and in cell culture supernatants of this group compared with the control group. Our findings suggest that decreased apoptosis of megakaryocytes also contributes to in vitro dysmegakaryocytopoiesis and reduced platelet production. The abnormal expression of sTRAIL in plasma and TRAIL and Bcl-xL in megakaryocytes may play a role in the pathogenesis of impaired megakaryocyte apoptosis in ITP.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3