In vivo distribution of β2 glycoprotein I under various pathophysiologic conditions

Author:

Agostinis Chiara1,Biffi Stefania2,Garrovo Chiara2,Durigutto Paolo3,Lorenzon Andrea2,Bek Alpan2,Bulla Roberta3,Grossi Claudia4,Borghi Maria O.45,Meroni PierLuigi456,Tedesco Francesco3

Affiliation:

1. Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattera Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy;

2. Optical Imaging Laboratory, Cluster in Biomedicine, Trieste, Italy;

3. Department of Life Sciences, University of Trieste, Trieste, Italy;

4. Laboratory of Immuno-Rheumatology, IRCCS Istituto Auxologico Italiano, Milan, Italy;

5. Department of Internal Medicine, University of Milan, Milan, Italy; and

6. Division of Rheumatology, Istituto G. Pini, Milan, Italy

Abstract

Abstract In vitro studies have documented β2 glycoprotein I (β2GPI) binding to endothelial cells (ECs) and trophoblast using antiphospholipid antibodies. The in vivo binding of β2GPI to these cells and the conditions that favor their interaction have not been investigated. We analyzed the in vivo distribution of cyanine 5.5-labeled β2GPI in mice and evaluated the effect of pregnancy and circulating antibodies on its tissue localization. The signal was detected in the liver by whole body scan and ex vivo analysis. The β2GPI failed to bind to the vascular endothelium and reacted only with the ECs of uterine vessels. In pregnant mice the protein was localized on ECs and trophoblast at the embryo implantation sites. Immunized mice showed a similar β2GPI biodistribution to naive mice but the immunized pregnant animals exhibited a significant increase in fetal loss associated with C3 and C9 deposition at the implantation sites. Treatment of mice with LPS after β2GPI-Cy5.5 injection promoted protein localization on gut and brain ECs associated with IgG, C1q, and C9 deposition in immunized mice. These findings indicate that β2GPI binding to EC requires priming with pro-inflammatory factors which is not needed for uterine and placental localization probably dependent on hormonal changes.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3