Gene expression–based classification and regulatory networks of pediatric acute lymphoblastic leukemia

Author:

Li Zhigang1,Zhang Wei23,Wu Minyuan1,Zhu Shanshan23,Gao Chao1,Sun Lin1,Zhang Ruidong1,Qiao Nan23,Xue Huiling2,Hu Yamei1,Bao Shilai4,Zheng Huyong1,Han Jing-Dong J.2

Affiliation:

1. Beijing Children's Hospital of Capital Medical University, Beijing;

2. Chinese Academy of Sciences Key Laboratory of Molecular and Developmental Biology, Center for Molecular Systems Biology, Beijing;

3. Graduate School, Chinese Academy of Sciences, Beijing; and

4. Chinese Academy of Sciences Key Laboratory of Molecular and Developmental Biology, Center for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China

Abstract

Abstract Pediatric acute lymphoblastic leukemia (ALL) contains cytogenetically distinct subtypes that respond differently to cytotoxic drugs. Subtype classification can be also achieved through gene expression profiling. However, how to apply such classifiers to a single patient and correctly diagnose the disease subtype in an independent patient group has not been addressed. Furthermore, the underlying regulatory mechanisms responsible for the subtype-specific gene expression patterns are still largely unknown. Here, by combining 3 published microarray datasets on 535 mostly white children's samples and generating a new dataset on 100 Chinese children's ALL samples, we were able to (1) identify a 62-gene classifier with 97.6% accuracy from the white children's samples and validated it on the completely independent set of 100 Chinese samples, and (2) uncover potential regulatory networks of ALL subtypes. The classifier we identified was, thus far, the only one that could be applied directly to a single sample and that sustained validation in a large independent patient group. Our results also suggest that the etiology of ALL is largely the same among different ethnic groups, and that the transcription factor hubs in the predicted regulatory network might play important roles in regulating gene expression and development of ALL.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3