The Lipid Addiction of Diffuse Large B-Cell Lymphoma (DLBCL) and Potential Treatment Strategies with Novel Fatty Acid Synthase (FASN) Small Molecule Inhibitors

Author:

Dashnamoorthy Ravi1,Abermil Nassera2,Behesti Afshin1,Kozlowski Paige3,Lansigan Frederick4,Kinlaw William B4,Gartenhaus Ronald5,Jones Graham6,Hlatky Lynn1,Evens Andrew M.72

Affiliation:

1. Tufts University School of Medicine, Boston, MA

2. Tufts Medical Center, Boston, MA

3. Northeastern University, Boston,

4. Dartmouth-Hitchcock Medical Center, Lebanon, NH

5. Greenebaum Cancer Center, University of Maryland, Baltimore, Baltimore, MD

6. Northeastern University, Boston, MA

7. Division of Hematology/Oncology, Tufts Medical Center, Boston, MA

Abstract

Abstract Background: Fatty acid (FA) metabolism is altered in several cancers through increased de novo synthesis of lipids via up-regulation fatty acid synthase (FASN) and increased utilization of lipids via β-oxidation. We investigated the dependence of DLBCL survival on FA metabolism. In addition, we examined novel FASN inhibitors TVB3567 and TVB3166 in comparison with cerulenin for the effects on cell survival and PI3K and MAPK-related biological pathways associated with tumor-related FA metabolism in DLBCL. Methods: FASN inhibitors, TVB3567 and TVB3166 (3V Biosciences, CA), cerulenin (FASN inhibitor), orlistat (anti-lipoprotein lipase (LPL) and FASN), PI3K/mTOR, and MEK small molecule inhibitors were studied in OCI-LY3, OCI-LY19, SUDHL4, SUDHL6, and SUDHL10 DLBCL cell lines for the effects of FA inhibition on lipid metabolism, cell signaling, and cell death. The effects of FASN inhibition on global gene expression profile (GEP) were also determined with Affymetrix Human 2.0 ST Genechip with Gene set enrichment analysis (GSEA). We also utilized short hairpin RNA interference (shRNA) to study interactions between FASN and PI3K/MAPK signaling. Finally, AutoDock Vina software (autodock.scripps.edu) was utilized to analyze drug target (FASN enzyme) binding affinity and assist in the design of FASN inhibitors with higher target binding affinity. Results: DLBCL cell lines OCI-LY3, SUDHL4, and SUDHL6 grown in the presence of lipoprotein-depleted serum showed exquisite sensitivity to lipid deprivation resulting in near complete cytotoxicity by MTT. Lipid deprivation-induced apoptotic cell death, detected as cleaved caspase 3 and PARP and Annexin-V/PI positivity, in these cells. Further, these effects were completely rescued by Very Low Density Lipoprotein (VLDL) supplementation to growth medium in SUDHL4 confirming the high lipid-dependency on cell survival in DLBCL. Treatment with pharmacological inhibitors of FASN (ie, TVB3567, TVB3166, cerulenin, or orlistat) resulted in a dose- and time-dependent reduction in cell viability in all DLBCL cell lines. Ingenuity Pathway Analysis (IPA) from GEP with cerulenin-treated OCI-LY3 showed prominent suppression of CD40, TNF, and NFκB dependent inflammatory responses as well as activation of apoptosis as predominant biological activities including significant down-regulation of genes involved in Krebs cycle and p38 MAPK pathways. Interestingly, upstream regulation by IPA predicted activation of MEK/ERK and MYC-dependent functions; and in OCI-LY3 with shRNA knock down of FASN, we observed constitutive activation of ERK as detected with increased phosphorylation by western blot. Activation of MEK/ERK and MYC is expected in part owing to metabolic stress induced by FASN inhibition. Considering the impact of MEK/ERK pathways on lipid metabolism, we next investigated the impact of MEK/ERK on FA metabolism. FASN was significantly decreased following MEK or ERK shRNA in OCILY-3 and SUDHL10 cells. Similarly, pharmacological inhibition of MEK or PI3K/mTOR (using novel small molecule agents AZD6244 (selumetinib) or BEZ235, respectively) resulted in marked down-regulation of FASN expression. Based on these results, FASN inhibition appears to a promising therapeutic target for the treatment of DLBCL, however attaining clinical efficacy with existing compounds require the effective drug concentration to be within the nanomolar range. Thus, we utilized AutoDock to determine drug docking enzyme inhibition constant (ki). We identified high ki values of 33μM and 180μM for Cerulenin and Orilstat, respectively. Therefore, we have developed/constructed modified novel and potent anti-FA compounds with ki <1μM that are currently being investigated. Conclusions: Collectively, we demonstrated that DLBCL cell survival is highly dependent on FA metabolism and that targeting lipid metabolism may be harnessed as a potential therapeutic strategy. We also showed that MEK/ERK-dependent mechanisms are intimately involved in promoting lipid addiction in DLBCL cells. Further investigation is warranted to delineate the mechanisms through which MEK/ERK regulate FASN expression and to determine in vivo implications of FASN inhibition on DLBCL tumor growth. In addition, continued development, design, and enhancement are needed to construct the most optimal anti-FA therapeutic agents. Disclosures Lansigan: Teva Pharmaceuticals: Research Funding; Spectrum Pharmaceuticals: Research Funding.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3