Frequent Mutations in the Calreticulin Gene CALR in Myeloproliferative Neoplasms

Author:

Thorsten Klampfl1,Gisslinger Heinz2,Harutyunyan Ashot S1,Nivarthi Harini1,Rumi Elisa3,Milosevic Jelena D.1,Them Nicole C.C.1,Berg Tiina1,Gisslinger Bettina2,Pietra Daniela3,Chen Doris1,Vladimer Gregory I.1,Bagienski Klaudia1,Milanesi Chiara3,Casetti Ilaria Carola3,Sant'Antonio Emanuela3,Ferretti Virginia3,Elena Chiara3,Schischlik Fiorella1,Cleary Ciara1,Six Melanie1,Schalling Martin2,Schönegger Andreas1,Bock Christoph1,Malcovati Luca3,Pascutto Christiana3,Superti-Furga Giulio1,Cazzola Mario3,Kralovics Robert1

Affiliation:

1. CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria,

2. Department of Internal Medicine I, Division of Hematology and Blood Coagulation, Medical University of Vienna, Vienna, Austria,

3. Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy

Abstract

Abstract The classical, BCR-ABL1 negative myeloproliferative neoplasms (MPN) are polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF). The most common genetic alteration in MPN is the JAK2-V617F mutation detected in 95% of PV patients and in 50-60% of patients with ET or PMF. Mutations in exon 12 of JAK2 and in the thrombopoietin receptor gene MPL are found in an additional 5-10% of the cases. In recent years a number of other genes were shown to be affected in MPN. However, these mutations are not mutually exclusive with JAK2 and MPL mutations and are also found in other myeloid malignancies. A specific molecular marker for the remaining 40% of ET or PMF patients with wild type JAK2 and MPL is still unknown. We used whole-exome sequencing to identify novel mutations in PMF patients with wild type JAK2 and MPL. The analysis revealed recurrent somatic insertions and deletions in CALR encoding for calreticulin. All detected mutations resulted in a frameshift and clustered in the last exon (exon 9) of the gene. Following up on this finding we developed a PCR based assay to screen 1107 MPN patients for insertion/deletion mutations in exon 9 of CALR. No mutations were detected in PV. In ET and PMF CALR mutations were mutually exclusive with mutant JAK2 and mutant MPL. Of the patients with wild type JAK2 and MPL, 67% ET and 88% PMF had mutant CALR. We also tested 19 patients with wild type CALR-exon 9 for mutations in the other exons of the gene, but all were negative. Furthermore we did not find CALR-exon 9 mutations in 254 patients with de novo acute myeloid leukemia, 45 with chronic myeloid leukemia, 73 with myelodysplastic syndrome or 64 with chronic myelomonocytic leukemia. Out of 24 patients with refractory anemia with ringed sideroblasts associated with marked thrombocytosis (RARS-T), 3 patients carried CALR mutations. These patients were wild type for JAK2 and MPL. In total we detected 36 different types of mutations in CALR. A 52 bp deletion and a 5 bp insertion were the most prominent types found in 53% and 32% of all cases with mutant CALR. All 36 types of mutations result in a frameshift to the same alternative reading frame, generating a novel C-terminus of the mutated protein. The wild type C-terminal region of CALR contains a high-capacity calcium-binding domain and is highly negatively charged. As a consequence of the frameshift mutations the negatively charged amino acids are replaced by both neutral and positively charged amino acids. In addition, an endoplasmic reticulum retention signal present in the wild type protein is lost in the mutant variants. Expression in HEK cells showed that wild type CALR localizes in the endoplasmic reticulum, whereas this localization is less prominent in cells expressing mutant CALR. This observation is in line with the loss of the endoplasmic reticulum retention signal in the mutant protein. Overexpression of the most common CALR mutation (a 52 bp deletion) in interleukin-3 (IL-3) dependent Ba/F3 cells led to IL-3-independent growth and hypersensitivity to IL-3. Cells overexpressing the mutant were sensitive to the JAK-family kinase inhibitor SAR302503 and showed elevated STAT5 phosphorylation in absence of IL-3. This indicates that JAK-STAT signaling is involved in the observed cytokine independent growth of mutant CALR expressing Ba/F3 cells. ET and PMF patients with mutant CALR present with lower white blood cell counts (P<0.001 for ET, P=0.027 for PMF) and elevated platelet levels (P<0.001 in both entities) compared to patients with mutant JAK2. In both disease entities patients with mutant CALR show significantly better overall survival than patients with mutant JAK2 (P=0.043 in ET, P<0.001 in PMF). ET patients with mutant CALR had a lower risk of thrombosis in comparison to those with mutant JAK2 (P=0.003). Mutant CALR is a novel, specific molecular marker detected in the majority of MPN patients negative for JAK2 and MPL mutations. Use of this marker in the clinic is expected to improve diagnostic and therapeutic decision-making in MPN. Disclosures: No relevant conflicts of interest to declare.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3