Gene Therapy for Fanconi Anemia in Seattle: Clinical Experience and Next Steps

Author:

Adair Jennifer E12,Becker Pamela S.123,Chandrasekaran Devikha1,Choi Grace1,Woolfrey Ann E12,Burroughs Lauri124,Kiem Hans-Peter12

Affiliation:

1. Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA

2. University of Washington, Seattle, WA

3. Seattle Cancer Care Alliance, Seattle, WA

4. Seattle Children's Hospital, Seattle, WA

Abstract

Abstract One hallmark of the rare, monogenic disorder called Fanconi anemia (FA) is an accelerated decline in hematopoietic stem cells (HSCs) leading to bone marrow (BM) failure. Long-term treatment requires successful bone marrow transplant (BMT) from an unaffected donor. However, BMT success is limited if the donor is not a matched sibling and ~70% of FA patients lack such donors. Gene therapy could be an alternative, correcting the genetic defect in the patient's own HSCs, and negating the need for a BMT donor. Based on lessons learned in previous FA gene therapy studies, we developed an optimized protocol for lentivirus (LV)-mediated FANCA gene transfer into HSCs from FA-A patients. This phase I clinical trial incorporates vector recommendations from the International FA Gene Therapy Working Group. Two patients have been treated on this trial to date (National Clinical Trials Registry ID: NCT01331018). This protocol harvests BM to collect unmanipulated HSC and does not include conditioning prior to cell infusion. Patient 1 is a 22-year old male with confirmed FA-A resulting from a splice variant in exon 22 of the FANCA gene (c. 1827-1 G>A). Baseline ANC averaged 0.5-1.0 K/mcL and baseline platelet counts averaged 40 K/mcL. A total of 3.2 x 107 CD34+ cells were present in 1.1L of BM, but only 9.4 x 106 total CD34+ cells were successfully isolated by magnetic bead separation, due to low level CD34 expression. LV transduction at 10 infectious units (IU)/cell resulted in a vector copy number (VCN) of 0.33 per cell and 18.4% of colony-forming cells transduced. Patient 2 is a 10-year old male with confirmed FA-A resulting from gross deletion of exons 6-31 of the FANCA gene. Baseline ANC and platelets declined over a 4.5-year interval prior to gene therapy and were 0.67 K/mcL and 82 K/mcL, respectively, in the 6 months prior to treatment. A total of 400mL of BM was collected, containing a total of 30.6 x 106 CD34+ cells. To avoid excessive CD34+ cell loss, the CD34+ cell magnetic bead purification step was omitted and the entire red blood cell depleted BM product was subjected to LV transduction at 10 IU/cell. We observed a VCN of 1.83 per cell and 43% of colony-forming cells transduced, suggesting more efficient transduction of the mixed cell population. Both patients tolerated the harvest and infusion procedures but displayed low and declining levels of transduced cells in peripheral blood after infusion. For future subjects, use of pre-infusion conditioning may be required to achieve long-term engraftment in vivo. Interestingly, both patients have maintained stable blood cell counts since gene therapy. These data demonstrate that LV gene therapy in FA patients is safe and suggest that avoidance of direct CD34 selection is advantageous for transduction and gene transfer. However, one complicating factor is the volume of concentrated LV vector required to transduce the non-purified cell product infused in Patient 2. To address these barriers, we developed a modified clinical protocol which utilizes depletion of mature cell lineages including CD3+, CD14+, CD16+ and CD19+ cells. Using healthy donor bone marrow we demonstrate that this protocol efficiently depletes >85% of cells expressing each lineage marker, reducing the volume of LV vector required for gene transfer by 60-70%. Most importantly, we demonstrate that this protocol preserves >90% of CD34+ cells present in the starting bone marrow product, and that these cells are efficiently transduced and capable of engrafting in a xenotransplant model. This protocol is currently being implemented for subjects in the ongoing phase I trial. Disclosures Adair: Rocket Pharmaceuticals: Consultancy, Equity Ownership. Kiem:Rocket Pharmaceuticals: Consultancy, Equity Ownership, Research Funding.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3