Mapping of distinct von Willebrand factor domains interacting with platelet GPIb and GPIIb/IIIa and with collagen using monoclonal antibodies

Author:

Girma JP,Kalafatis M,Pietu G,Lavergne JM,Chopek MW,Edgington TS,Meyer D

Abstract

Abstract We have used monoclonal antibodies (M Abs) and proteolytic fragmentation to localize structurally the functional sites of human von Willebrand factor (vWF) responsible for interaction with membrane glycoproteins GPIb, GPIIb/IIIa, and with collagen. SpII (215 kd) and SpIII (320 kd), the S aureus V-8 protease homodimeric fragments representing the carboxy-terminal and amino-terminal segments of the vWF subunit, competitively inhibited the binding of multimeric vWF to thrombin-stimulated or ristocetin-stimulated platelets, respectively. Specific saturable binding of each fragment was observed to stimulate platelets appropriately and was inhibited only by selected M Abs that both bound to the specific fragment and inhibited the corresponding function. M Ab 9, which blocks thrombin-induced binding of vWF to platelets, inhibited binding of SpII to platelets and bound to SpII as well as to a dimeric, 86-kd thermolysin fragment composed of 42-kd and 23-kd subunits, each possessing the epitope. Binding of SpII was also inhibited by a M Ab to GPIIb/IIIa. Thus, it appears that a portion of the carboxy-terminal end of vWF contains the ligand site for the GPIIb/IIIa receptor. In contrast, M Ab H9, which blocks ristocetin- induced binding of vWF to platelets, inhibited binding of SpIII to platelets and bound to SpIII as well as to monomeric 33-kd and 28-kd subtilisin fragments. Binding of SpIII to platelets was also inhibited by a M Ab to GPIb. Thus, it appears that a small segment of the amino- terminal part of vWF contains the ligand for the platelet GPIb receptor. The collagen binding site of vWF was localized with M Ab B203, which inhibits vWF interaction with collagen. This M Ab also bound to SpIII as well as to monomeric 26-kd and 23-kd subtilisin fragments. Thus, the third functional site responsible for collagen binding appears to be localized on the amino-terminal portion of vWF, in a linear sequence different from those responsible for interaction with either of the platelet receptors. These assignments of functional sites should facilitate the localization of structural defects of vWF in the various forms of vWD and support the role of vWF as an adhesive protein with multiple interactive sites.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3