Molecular Pathogenesis of MDS

Author:

Look A. Thomas

Abstract

Abstract Clonal disorders of hematopoiesis, such as myelodysplastic syndromes (MDS) and myeloproliferative diseases (MPD), affect both hematopoietic stem cells and progenitor cells within the erythroid, platelet and granulocytic lineages and can have devastating consequences in children and adults. The genetic features of these diseases often include clonal, nonrandom chromosomal deletions (e.g., 7q–, 5q–, 20q–, 6q–, 11q– and 13q–) that appear to inactivate tumor suppressor genes required for the normal development of myeloid cells (reviewed in Bench1 and Fenaux2). These putative tumor suppressors have proved to be much more difficult to identify than oncogenes activated by chromosomal translocations, the other major class of chromosomal lesions in MDS and MPD.3 Although MDS and MPD are almost certainly caused by mutations in stem/progenitor cells,4 the role of inactivated tumor suppressor genes in this process remains poorly understood. In a small portion of myeloid diseases, mutations have been identified in genes encoding factors known to be required for normal hematopoiesis, such as PU.1, RUNX1, CTNNA1 (α-catenin) and c/EBPα, and implicating these genes as tumor suppressors.5–7 Nonetheless, the identities of most deletion-associated tumor suppressors in these diseases remains elusive, despite complete sequencing of the human genome. The deleted regions detected by cytogenetic methods are generally very large, containing many hundreds of genes, thus making it hard to locate the critical affected gene or genes. It is also unclear whether dysfunctional myelopoiesis results from haploinsufficiency, associated with the deletion of one allele, or from homozygous inactivation due to additional point mutations or microdeletions of the retained wild-type allele. In general MDS have proved surprisingly resistant to conventional treatments. Targeted therapeutic advances in MDS will likely depend on a full comprehension of underlying molecular mechanisms, in particular the tumor suppressor genes lost through clonal, nonrandom chromosomal deletions, such as the 7q– and (del)5q.

Publisher

American Society of Hematology

Subject

Hematology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3