Microvascular abnormalities in sickle cell disease: a computer-assisted intravital microscopy study

Author:

Cheung Anthony T. W.1,Chen Peter C. Y.1,Larkin Edward C.1,Duong Patricia L.1,Ramanujam Sahana1,Tablin Fern1,Wun Ted1

Affiliation:

1. From the Department of Medical Pathology, University of California (UC) Davis School of Medicine, Davis, CA; Department of Bioengineering, UC San Diego, La Jolla, CA; Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, CA; Department of Internal Medicine (Hematology), UC Davis School of Medicine, Sacramento, CA; and Veteran Administration Northern California Health Systems, Rancho Cordova, CA.

Abstract

The conjunctival microcirculation of 18 homozygous sickle cell disease (SCD) patients during steady-state, painful crisis, and postcrisis conditions was recorded on high-resolution videotapes using intravital microscopy. Selected videotape sequences were subsequently coded, frame-captured, studied, and blindly analyzed using computer-assisted image analysis protocols. At steady-state (baseline), all SCD patients exhibited some of the following morphometric abnormalities: abnormal vessel diameter, comma signs, blood sludging, boxcar blood flow phenomenon, distended vessels, damaged vessels, hemosiderin deposits, vessel tortuosity, and microaneurysms. There was a decrease in vascularity (diminished presence of conjunctival vessels) in SCD patients compared with non-SCD controls, giving the bulbar conjunctiva a “blanched” avascular appearance in most but not all SCD patients during steady-state. Averaged steady-state red cell velocity in SCD patients was slower than in non-SCD controls. During painful crisis, a further decrease in vascularity (caused by flow stoppage in small vessels) and a 36.7% ± 5.2% decrease in large vessel (mostly venular) diameter resulted. In addition, the conjunctival red cell velocities either slowed significantly (6.6% ± 13.1%; P < .01) or were reduced to a trickle (unmeasurable) during crisis. The microvascular changes observed during crisis were transient and reverted to steady-state baseline after resolution of crisis. When combined, intravital microscopy and computer-assisted image analysis (computer-assisted intravital microscopy) represent the availability of a noninvasive tool to quantify microvascular abnormalities in vascular diseases, including sickle cell disease. The ability to identify and relocate the same conjunctival vessels for longitudinal studies uniquely underscores the applicability of this quantitative real-time technology.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Reference24 articles.

1. The variable expression of sickle cell disease is genetically determined.;Powars;Semin Hematol.,1990

2. Pathogenesis and treatment of sickle cell disease.;Bunn;N Engl J Med.,1997

3. Easing the suffering caused by sickle cell disease.;Platt;N Engl J Med.,1994

4. Mortality in sickle cell disease. Life expectancy and risk factors for early death.;Platt;N Engl J Med.,1994

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3