The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors

Author:

Scharenberg Christian W.1,Harkey Michael A.1,Torok-Storb Beverly1

Affiliation:

1. From the Divisions of Clinical Research and Basic Sciences, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, WA.

Abstract

AbstractA promising and increasingly exploited property of hematopoietic stem cells is their ability to efflux the fluorescent dye Hoechst 33342. The Hoechst-negative cells are isolated by fluorescence-activated cell sorting as a so-called side “population” (SP) of bone marrow. This SP from bone marrow, as well as other tissues, is reported to contain immature stem cells with considerable plasticity. Some cell lines also efflux Hoechst and generate SP profiles. Reverse transcription–polymerase chain reaction (RT-PCR) and efflux inhibition studies with the lung carcinoma cell line, A549, implicated the ABCG2 transporter as a Hoechst efflux pump. Furthermore, it is shown that transient expression of ABCG2 generates a robust SP phenotype in human embryonic kidney (HEK293) cells. The results allow the conclusion thatABCG2 is a potent Hoechst efflux pump. Semiquantitative RT-PCR was used to characterize the developmental pattern of expression of ABCG2 in hematopoiesis. It is expressed at relatively high levels in putative hematopoietic stem cells (isolated as SP, 34+/38− or 34+/KDR+populations) and drops sharply in committed progenitors (34+/38+, 34+/33+, or 34+/10+). Expression remains low in most maturing populations, but rises again in natural killer cells and erythroblasts. Comparison of messenger RNA (mRNA) levels for the 3 major multidrug-resistant efflux pumps, MDR1,MRP1, and ABCG2, in bone marrow SP cells reveals that ABCG2 is the predominant form in these cells. These data suggest that ABCG2 contributes significantly to the generation of the SP phenotype in hematopoietic stem cells. Furthermore, the sharp down-regulation of ABCG2 at the stage of lineage commitment suggests that this gene may play an important role in the unique physiology of the pluripotent stem cell.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Reference33 articles.

1. The relative spatial distribution of CFU-S in the mouse spleen.;Ploemacher;Exp Hematol.,1985

2. Enrichment of murine hemopoietic clonogenic cells by multivariate analyses and sorting.;Pallavicini;Exp Hematol.,1985

3. Resting and activated subsets of mouse multipotent hematopoietic stem cells.;Spangrude;Proc Natl Acad Sci U S A.,1990

4. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo.;Goodell;J Exp Med.,1996

5. Hematopoietic potential of stem cells isolated from murine skeletal muscle.;Jackson;Proc Natl Acad Sci U S A.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3