Affiliation:
1. From the Institute of Pathology, Department of Molecular Pathology, and the University Hospital, Department of Dermatology, University of Würzburg, 97080 Würzburg, Germany.
Abstract
Abstract
A key feature of maturation of dendritic cells is the down-regulation of antigen-processing and up-regulation of immunostimulatory capacities. To study the differential expression of transcription factors in this process, we investigated the nuclear translocation and DNA binding of Rel/NF-κB and octamer factors during in vitro generation and maturation of dendritic cells compared with macrophage development. RelB was the only factor strongly up-regulated during the generation of both immature dendritic cells and macrophages. Cytokine-induced maturation of dendritic cells resulted in an increase in nuclear RelB, p50, p52, and especially c-Rel, whereas cytokine-treated macrophages responded poorly. This up-regulation of NF-κB factors did not correlate with lower levels of cytosolic NF-κB inhibitors, the IκBs. One IκB, Bcl-3, was strongly expressed only in mature dendritic cells. Furthermore, generation and maturation of dendritic cells led to a continuous down-regulation of the octamer factor Oct-2, whereas monocytes and macrophages displayed high Oct-2 levels. A similar pattern of maturation-induced changes in transcription factor levels was found in cultured murine epidermal Langerhans cells, suggesting a general physiological significance of these findings. Finally, this pattern of differential activation of Rel and octamer factors appears to be suitable in determining the maturation stage of dendritic cells generated by treatment with different cytokine combinations in vitro. (Blood. 2000;95:277-285)
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
130 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献