CrkL Activates Integrin-Mediated Hematopoietic Cell Adhesion Through the Guanine Nucleotide Exchange Factor C3G

Author:

Arai Ayako1,Nosaka Yurika1,Kohsaka Hitoshi1,Miyasaka Nobuyuki1,Miura Osamu1

Affiliation:

1. From the First Department of Internal Medicine, Tokyo Medical and Dental University, Tokyo, Japan.

Abstract

AbstractCrkL is a member of the Crk family of adapter proteins consisting mostly of SH2 and SH3 domains. CrkL is most abundantly expressed in hematopoietic cells and has been implicated in pathogenesis of chronic myelogenous leukemia. However, its function has not been precisely defined. Here, we show that overexpression of CrkL enhances the adhesion of hematopoietic 32D cells to fibronectin. The CrkL-induced increase in cell adhesion was blocked by antibodies against VLA-4 (4β1) and VLA-5 (5β1) but was observed without changes in surface expression levels of these integrins. Studies using CrkL mutants demonstrated that the SH2 domain is partially required for enhancing cell adhesion, whereas the C-terminal SH3 domain as well as the tyrosine phosphorylation site (Y207) is dispensable. In contrast, the N-terminal SH3 domain, involved in binding C3G and other signaling molecules, was showed to play a crucial role, because a mutant defective of this domain showed an inhibitory effect on the cell adhesion to fibronectin. Furthermore, overexpression of C3G also increased the adhesion of hematopoietic cells to fibronectin, whereas a C3G mutant lacking the guanine nucleotide exchange domain abrogated the CrkL-induced increase in cell adhesion. On the other hand, a dominant negative mutant of H-Ras or that of Raf-1 enhanced the basal and CrkL-induced cell adhesion and that of R-Ras modestly decreased the adhesion. Taken together, these results indicate that the CrkL-C3G complex activates VLA-4 and VLA-5 in hematopoietic cells, possibly by activating the small GTP binding proteins, including R-Ras, through the guanine nucleotide exchange activity of C3G.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3