Mechanical properties of rat bone marrow and circulating neutrophils and their responses to inflammatory mediators

Author:

Saito Hajime1,Lai Jean1,Rogers Rick1,Doerschuk Claire M.1

Affiliation:

1. From the Physiology Program, Harvard School of Public Health, Boston, MA; and the Division of Integrative Biology, Department of Pediatrics, Case Western Reserve University and Rainbow Babies and Children's Hospital, Cleveland, OH.

Abstract

Abstract Neutrophils are continuously released from the bone marrow (BM), and this release is accelerated during inflammation. This study compared the mechanical properties of mature neutrophils within the BM and the circulating blood, as well as the role of microtubule rearrangement in the release of neutrophils from the BM in rats. Neutrophils isolated from the BM were stiffer than neutrophils in the circulating blood, using magnetic twisting cytometry. BM neutrophils also contained more F-actin within the submembrane region than circulating neutrophils when examined using confocal microscopy, suggesting that mature quiescent neutrophils within the BM are stiffer than circulating neutrophils because of increased formation of F-actin beneath the plasma membrane. Complement protein 5 fragments or formylmethionyl-leucylphenylalanine (fMLP) induced a stiffening response within 2 minutes that was greater in circulating than in BM neutrophils. This stiffening required F-actin formation within the submembrane region but not microtubule rearrangement in both circulating and BM neutrophils. fMLP-induced shape changes were more pronounced in circulating than in BM neutrophils, which showed fewer and smaller pseudopods and fewer membrane irregularities. In vivo, fMLP induced neutropenia, sequestration of neutrophils within the pulmonary capillaries, and release of neutrophils from the BM. Studies using colchicine demonstrated that rearrangement of microtubules was not required for any of these processes but was required for normal trafficking of neutrophils through the pulmonary capillaries.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3