Cell surface tissue transglutaminase is involved in adhesion and migration of monocytic cells on fibronectin

Author:

Akimov Sergey S.1,Belkin Alexey M.1

Affiliation:

1. From the Department of Biochemistry, The Holland Laboratory, American Red Cross, Rockville, MD; and Department of Biochemistry and Molecular Biology, George Washington University, Washington, DC.

Abstract

Expression of tissue transglutaminase (transglutaminase II, tTG) was shown to increase drastically during monocyte differentiation into macrophages; however, its role in monocytic cells remains largely unknown. This study describes a novel function of cell surface tTG as an adhesion and migration receptor for fibronectin (Fn). Two structurally related transglutaminases, tTG and the A subunit of factor XIII (FXIIIA), are expressed on the surface of monocytic cells, whereas only surface tTG is associated with multiple integrins of the β1 and β3 subfamilies. Both surface levels of tTG and the amounts of integrin-bound tTG are sharply up-regulated during the conversion of monocytes into macrophages. In contrast, a reduction in biosynthesis and surface expression of FXIIIA accompanies monocyte differentiation. Cell surface tTG is colocalized with β1- and β3-integrins in podosomelike adhesive structures of macrophages adherent on Fn. Down-regulation of surface tTG by expression of antisense tTG construct or its inhibition by function-blocking antibodies significantly decreases adhesion and spreading of monocytic cells on Fn and, in particular, on the gelatin-binding fragment of Fn consisting of modules I6II1,2I7-9. Likewise, interfering with the adhesive function of surface tTG markedly reduces migration of myeloid cells on Fn and its gelatin-binding fragment. These data demonstrate that cell surface tTG serves as an integrin-associated adhesion receptor that might be involved in extravasation and migration of monocytic cells into tissues containing Fn matrices during inflammation.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3