Machine learning analysis of breast ultrasound to classify triple negative and HER2+ breast cancer subtypes

Author:

Ferre Romuald1,Elst Janne1,Senthilnathan Seanthan1,Lagree Andrew1,Tabbarah Sami1,Lu Fang-I1,Sadeghi-Naini Ali2,Tran William T.134,Curpen Belinda13

Affiliation:

1. , Sunnybrook Health Sciences Centre, , Canada

2. , York University, , Canada

3. , University of Toronto, , Canada

4. Temerty Centre for AI Research and Education, University of Toronto, , Canada

Abstract

OBJECTIVES: Early diagnosis of triple-negative (TN) and human epidermal growth factor receptor 2 positive (HER2+) breast cancer is important due to its increased risk of micrometastatic spread necessitating early treatment and for guiding targeted therapies. This study aimed to evaluate the diagnostic performance of machine learning (ML) classification of newly diagnosed breast masses into TN versus non-TN (NTN) and HER2+ versus HER2 negative (HER2−) breast cancer, using radiomic features extracted from grayscale ultrasound (US) b-mode images. MATERIALS AND METHODS: A retrospective chart review identified 88 female patients who underwent diagnostic breast US imaging, had confirmation of invasive malignancy on pathology and receptor status determined on immunohistochemistry available. The patients were classified as TN, NTN, HER2+ or HER2− for ground-truth labelling. For image analysis, breast masses were manually segmented by a breast radiologist. Radiomic features were extracted per image and used for predictive modelling. Supervised ML classifiers included: logistic regression, k-nearest neighbour, and Naïve Bayes. Classification performance measures were calculated on an independent (unseen) test set. The area under the receiver operating characteristic curve (AUC), sensitivity (%), and specificity (%) were reported for each classifier. RESULTS: The logistic regression classifier demonstrated the highest AUC: 0.824 (sensitivity: 81.8%, specificity: 74.2%) for the TN sub-group and 0.778 (sensitivity: 71.4%, specificity: 71.6%) for the HER2 sub-group. CONCLUSION: ML classifiers demonstrate high diagnostic accuracy in classifying TN versus NTN and HER2+ versus HER2− breast cancers using US images. Identification of more aggressive breast cancer subtypes early in the diagnostic process could help achieve better prognoses by prioritizing clinical referral and prompting adequate early treatment.

Publisher

IOS Press

Subject

Cancer Research,Oncology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3