Detecting and quantifying spatial misalignment between longitudinal kilovoltage computed tomography (kVCT) scans of the head and neck by using convolutional neural networks (CNNs)

Author:

Lallement Alex1,Noblet Vincent1,Antoni Delphine2,Meyer Philippe13

Affiliation:

1. ICube-UMR 7357, Strasbourg, France

2. Department of Radiation Therapy, Institut de Cancérologie de Strasbourg, Strasbourg, France

3. Department of Medical Physics, Institut de Cancérologie de Strasbourg, Strasbourg, France

Abstract

BACKGROUND: Adaptive radiotherapy (ART) aims to address anatomical modifications appearing during the treatment of patients by modifying the planning treatment according to the daily positioning image. Clinical implementation of ART relies on the quality of the deformable image registration (DIR) algorithms included in the ART workflow. To translate ART into clinical practice, automatic DIR assessment is needed. OBJECTIVE: This article aims to estimate spatial misalignment between two head and neck kilovoltage computed tomography (kVCT) images by using two convolutional neural networks (CNNs). METHODS: The first CNN quantifies misalignments between 0 mm and 15 mm and the second CNN detects and classifies misalignments into two classes (poor alignment and good alignment). Both networks take pairs of patches of 33x33x33 mm3 as inputs and use only the image intensity information. The training dataset was built by deforming kVCT images with basis splines (B-splines) to simulate DIR error maps. The test dataset was built using 2500 landmarks, consisting of hard and soft landmark tissues annotated by 6 clinicians at 10 locations. RESULTS: The quantification CNN reaches a mean error of 1.26 mm (± 1.75 mm) on the landmark set which, depending on the location, has annotation errors between 1 mm and 2 mm. The errors obtained for the quantification network fit the computed interoperator error. The classification network achieves an overall accuracy of 79.32%, and although the classification network overdetects poor alignments, it performs well (i.e., it achieves a rate of 90.4%) in detecting poor alignments when given one. CONCLUSION: The performances of the networks indicate the feasibility of using CNNs for an agnostic and generic approach to misalignment quantification and detection.

Publisher

IOS Press

Subject

Health Informatics,Biomedical Engineering,Information Systems,Biomaterials,Bioengineering,Biophysics

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3