Goal and Feature Model Optimization for the Design and Self-Adaptation of Socio-Cyber-Physical Systems

Author:

Anda Amal Ahmed1,Amyot Daniel1

Affiliation:

1. School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada

Abstract

Socio-cyber-physical systems (SCPSs) are cyber-physical systems with social concerns. Many emerging SCPSs, often qualified as “smart”, need such concerns to be addressed not only at design time but also at runtime, often by adapting dynamically to surrounding contexts, to keep providing optimal value to users. A comprehensive requirements and design modeling approach is needed to incorporate social concerns (e.g., using goal modeling) into SCPS development activities. This paper introduces an optimization method that provides design-time and runtime solutions for self-adaptive SCPSs while supporting the validation of their design models. The method helps satisfying the goals of the SCPS and its stakeholders by monitoring the system’s environment and qualities, while enforcing correctness constraints specified in a feature model. We integrate arithmetic functions generated automatically from goal and feature models to build a combined goal-feature model and synchronize the values of the features shared between i) the objective function represented by goal functions, and ii) the constraints represented by feature functions. The goal-feature model is solved by an optimization tool (IBM CPLEX) in order to calculate optimal adaptation solutions for common situations at design time. Runtime optimization is also used by the system for adapting to situations unanticipated during design. We use a Smart Home Management System case study to assess how well the method can be used to manage selection among alternatives according to monitored environmental conditions while solving emergent conflicts. Further experiments on the use of the method for runtime adaptation show good performance for realistic models and good scalability overall. Some remaining challenges and limitations exist, including the availability of quantitative models as inputs.

Publisher

IOS Press

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3